Айенстам Ж., Жакалос П.
 Коррозионные  испытания  сплавов  Fe10CrAl-RE  дали  хорошие  результаты,  но  требуется проверить устойчивость микроструктуры при температурах, когда возможно охрупчивание. Испытывались сплавы 10Cr и Fe21Cr5Al  при температурах 450-600°C. Все сплавы 10Cr  были устойчивы к фазовому разделению в течение 5000 часов при температурах 450°C и 475°C и в течение 10000 часов  –  при 500°C. При этих температурах наблюдалось явное охрупчивание сплава  Fe21Cr5Al.  При  550°C  и  600°C  ни  в  одном  из  сплавов  не  происходило  фазового разделения. 
 1.  Asher  R.C.,  Davies  D.,  Beetham  S.A.  Some  observations  on  the  compatibility  ofstructural  materials with  molten  lead.  Corrosion  Science,  1977,  vol.17,  no.7,  pp.545-557.  doi:10.1016/S0010-938X(77)80001-2. 
2.  Muller  G.,  Heinzel  A.,  Konys  J.,  Schumacher  G.,  Weisenburger  A.,  Zimmermann  F.,  Engelko  V., Rusanov A., Markov V. Results of steel corrosion tests in flowing liquid Pb/Bi at 420–600°C after 2000h. Journal of Nuclear Materials, 2002, vol.301, no.1, pp.40-46. doi:10.1016/S0022-3115(01)00725-5 
3.  Kurata Y., Futakawa M., Saito S.  Corrosion behavior of Al-surface-treated steels in liquid Pb–Bi in a pot. Journal of Nuclear Materials, 2004, vol.335, no.3, pp.501-507. doi:10.1016/j.jnucmat.2004.08.004. 
4.  Heinzel  A.,  Kondo  M.,  Takahashi  M.  Corrosion  of  steels  with  surface  treatment  and  Al-alloying  by GESA  exposed  in  lead–bismuth.  Journal  of  Nuclear  Materials,  2006,  vol.350,  no.3,  pp.264-270. doi:10.1016/j.jnucmat.2006.01.014 
5.  Weisenburger  A.,  Heinzel  A.,  Fazio  C.,  Muller  G., Markow  V.G., Kastanov  A.D.  Low  cycle  fatigue tests of surface modified T91 steel in 10-6 wt% oxygen containing Pb45Bi55  at 550°C.  Journal of Nuclear Materials, 2008, vol.377, no. 1, pp.261-267. doi:10.1016/j.jnucmat.2008.02.075 
6.  Hosemann P., Thau H.T., Johnson A.L.,  Maloy S.A., Li N.  Corrosion of ODS steels in lead–bismuth eutectic.  Journal  of  Nuclear  Materials,  2008,  vol.373,  no.  1-3,  pp.246-253. 
doi:10.1016/j.jnucmat.2007.05.049 
7.  Takaya S., Furukawa T., Aoto K., Muller G., Weisenburger A., Heinzel A., Inoue M., Okuda T., Abe F., Ohnuki S., Fujisawa T., Kimura A. Corrosion behavior of Al-alloying high Cr-ODS steels in lead–bismuth eutectic. Journal of Nuclear Materials, 2009, vol. 386-388, pp. 507-510. 
8.  Takaya S., Furukawa T., Inoue M., Fujisawa T., Okuda T., Abe F., Ohnuki S., Kimura A.  Corrosion resistance of Al-alloying high Cr–ODS steels in stagnant lead–bismuth.  Journal of Nuclear Materials, 2010, vol.398, no. 1-3, pp.132-138. doi:10.1016/j.jnucmat.2009.10.023 
9.  Lim J., Nam H.O., Hwang I.S., Kim J.H. A study of early corrosion behaviors of FeCrAl alloys in liquid lead–bismuth  eutectic  environments.  Journal  of  Nuclear  Materials,  2010,  vol.407,  no  3, pp.205-210. doi:10.1016/j.jnucmat.2010.10.018 
10.  Weisenburger A., Muller G., Heinzel A., Jianu A., Muscher H., Kieser M. Corrosion, Al containing corrosion barriers and mechanical properties of steels foreseen as structural materials  in liquid lead alloy cooled  nuclear  systems.  Nuclear  Engineering  and  Design,  2011,  vol.241,  no.5,  pp.1329-1334. doi:10.1016/j.nucengdes.2010.08.005 
11.  Fetzer R., Weisenburger A., Jianu A., Muller G.  Oxide scale formation of modified FeCrAl coatings exposed to liquid lead. Corrosion Science, 2012, vol.55, pp.213-218. doi:10.1016/j.corsci.2011.10.019 
12.  Del Giacco M., Weisenburger A., Jianu A., Lang F., Mueller G.  Influence of composition and microstructure  on  the  corrosion  behavior  of  different  Fe–Cr–Al  alloys  in  molten  LBE.  Journal  of  Nuclear Materials, 2012, vol.421, no. 1, pp.39-46. doi:10.1016/j.jnucmat.2011.11.049 
13.  Kurata Y., Yokota H., Suzuki T.  Development of aluminum-alloy coating on type 316SS for nuclear systems using liquid lead–bismuth.  Journal of Nuclear Materials,  2012, vol.424, no. 1-3, pp.237-246. doi:10.1016/j.jnucmat.2012.03.018 
14.  Lim J., Hwang I.S., Kim J.H. Microstructural characterization on intergranular stress corrosion cracking of Alloy 600 in PWR primary water environment. Journal of Nuclear Materials, 2013, vol.440, no. 1-3, pp. 46-54. doi:10.1016/j.jnucmat.2013.03.088 
15.  Weisenburger A., Jianu A., Doyle S., Bruns M., Fetzer R., Heinzel A., DelGiacco M., An W., Muller G. Oxide scales formed on Fe–Cr–Al-based model alloys exposed to oxygen containing molten lead. Journal of Nuclear Materials, 2013, vol.437, no. 1-3, pp.282-292. doi:10.1016/j.jnucmat.2013.02.044 
16.  Ejenstam  J.,  Halvarsson  M.,  Weidow J., Jönsson  B.,  Szakalos  P.  Oxidation  studies  of  Fe10CrAl–RE alloys  exposed  to  Pb  at  550°C  for  10,000 h.  Journal  of  Nuclear  Materials,  2013,  vol.443,  no.  1-3, pp.161-170. doi:10.1016/j.jnucmat.2013.07.023 
17.  Williams R.O., Paxton H.W. The Nature of Aging Binary Iron-Chromium Alloys Around 500°C.  Journal of Iron and Steel Research, 1957, no.185, pp.358-374. 
18.  Capdevila  C.,  Miller  M.K.,  Russell  K.F.,  Chao  J.,  Gonzalez-Carrasco  J.L.  Phase  separation  in  PM 2000™ Fe-base ODS alloy: Experimental study at the atomic level. Materials Science and Engineering, 2008, vol.490, no.1-2, pp.277-288. doi:10.1016/j.msea.2008.01.029 
19.  Miller  M.K.  Atom  probe  field  ion  microscopy.  Vacuum,  1994,  vol.45,  no.  6-7,  pp.819-831. doi:10.1016/0042-207X(94)90117-1 
20.  Kobayashi S., Takasugi T.  Mapping of 475°C embrittlement in ferritic Fe–Cr–Al alloys. Scripta Materialia, 2010, vol.63, no. 11, pp.1104-1107. doi:10.1016/j.scriptamat.2010.08.015 
21.  Li W., Lu S., Hu Q.-M., Mao H., Johansson B., Vitos L. The effect of Al on the 475°C embrittlement of Fe–Cr  alloys.  Computational  Materials  Science,  2013,  vol.74,  pp.101-106. doi:10.1016/j.commatsci.2013.03.021