Айенстам Ж., Жакалос П.
Коррозионные испытания сплавов Fe10CrAl-RE дали хорошие результаты, но требуется проверить устойчивость микроструктуры при температурах, когда возможно охрупчивание. Испытывались сплавы 10Cr и Fe21Cr5Al при температурах 450-600°C. Все сплавы 10Cr были устойчивы к фазовому разделению в течение 5000 часов при температурах 450°C и 475°C и в течение 10000 часов – при 500°C. При этих температурах наблюдалось явное охрупчивание сплава Fe21Cr5Al. При 550°C и 600°C ни в одном из сплавов не происходило фазового разделения.
1. Asher R.C., Davies D., Beetham S.A. Some observations on the compatibility ofstructural materials with molten lead. Corrosion Science, 1977, vol.17, no.7, pp.545-557. doi:10.1016/S0010-938X(77)80001-2.
2. Muller G., Heinzel A., Konys J., Schumacher G., Weisenburger A., Zimmermann F., Engelko V., Rusanov A., Markov V. Results of steel corrosion tests in flowing liquid Pb/Bi at 420–600°C after 2000h. Journal of Nuclear Materials, 2002, vol.301, no.1, pp.40-46. doi:10.1016/S0022-3115(01)00725-5
3. Kurata Y., Futakawa M., Saito S. Corrosion behavior of Al-surface-treated steels in liquid Pb–Bi in a pot. Journal of Nuclear Materials, 2004, vol.335, no.3, pp.501-507. doi:10.1016/j.jnucmat.2004.08.004.
4. Heinzel A., Kondo M., Takahashi M. Corrosion of steels with surface treatment and Al-alloying by GESA exposed in lead–bismuth. Journal of Nuclear Materials, 2006, vol.350, no.3, pp.264-270. doi:10.1016/j.jnucmat.2006.01.014
5. Weisenburger A., Heinzel A., Fazio C., Muller G., Markow V.G., Kastanov A.D. Low cycle fatigue tests of surface modified T91 steel in 10-6 wt% oxygen containing Pb45Bi55 at 550°C. Journal of Nuclear Materials, 2008, vol.377, no. 1, pp.261-267. doi:10.1016/j.jnucmat.2008.02.075
6. Hosemann P., Thau H.T., Johnson A.L., Maloy S.A., Li N. Corrosion of ODS steels in lead–bismuth eutectic. Journal of Nuclear Materials, 2008, vol.373, no. 1-3, pp.246-253.
doi:10.1016/j.jnucmat.2007.05.049
7. Takaya S., Furukawa T., Aoto K., Muller G., Weisenburger A., Heinzel A., Inoue M., Okuda T., Abe F., Ohnuki S., Fujisawa T., Kimura A. Corrosion behavior of Al-alloying high Cr-ODS steels in lead–bismuth eutectic. Journal of Nuclear Materials, 2009, vol. 386-388, pp. 507-510.
8. Takaya S., Furukawa T., Inoue M., Fujisawa T., Okuda T., Abe F., Ohnuki S., Kimura A. Corrosion resistance of Al-alloying high Cr–ODS steels in stagnant lead–bismuth. Journal of Nuclear Materials, 2010, vol.398, no. 1-3, pp.132-138. doi:10.1016/j.jnucmat.2009.10.023
9. Lim J., Nam H.O., Hwang I.S., Kim J.H. A study of early corrosion behaviors of FeCrAl alloys in liquid lead–bismuth eutectic environments. Journal of Nuclear Materials, 2010, vol.407, no 3, pp.205-210. doi:10.1016/j.jnucmat.2010.10.018
10. Weisenburger A., Muller G., Heinzel A., Jianu A., Muscher H., Kieser M. Corrosion, Al containing corrosion barriers and mechanical properties of steels foreseen as structural materials in liquid lead alloy cooled nuclear systems. Nuclear Engineering and Design, 2011, vol.241, no.5, pp.1329-1334. doi:10.1016/j.nucengdes.2010.08.005
11. Fetzer R., Weisenburger A., Jianu A., Muller G. Oxide scale formation of modified FeCrAl coatings exposed to liquid lead. Corrosion Science, 2012, vol.55, pp.213-218. doi:10.1016/j.corsci.2011.10.019
12. Del Giacco M., Weisenburger A., Jianu A., Lang F., Mueller G. Influence of composition and microstructure on the corrosion behavior of different Fe–Cr–Al alloys in molten LBE. Journal of Nuclear Materials, 2012, vol.421, no. 1, pp.39-46. doi:10.1016/j.jnucmat.2011.11.049
13. Kurata Y., Yokota H., Suzuki T. Development of aluminum-alloy coating on type 316SS for nuclear systems using liquid lead–bismuth. Journal of Nuclear Materials, 2012, vol.424, no. 1-3, pp.237-246. doi:10.1016/j.jnucmat.2012.03.018
14. Lim J., Hwang I.S., Kim J.H. Microstructural characterization on intergranular stress corrosion cracking of Alloy 600 in PWR primary water environment. Journal of Nuclear Materials, 2013, vol.440, no. 1-3, pp. 46-54. doi:10.1016/j.jnucmat.2013.03.088
15. Weisenburger A., Jianu A., Doyle S., Bruns M., Fetzer R., Heinzel A., DelGiacco M., An W., Muller G. Oxide scales formed on Fe–Cr–Al-based model alloys exposed to oxygen containing molten lead. Journal of Nuclear Materials, 2013, vol.437, no. 1-3, pp.282-292. doi:10.1016/j.jnucmat.2013.02.044
16. Ejenstam J., Halvarsson M., Weidow J., Jönsson B., Szakalos P. Oxidation studies of Fe10CrAl–RE alloys exposed to Pb at 550°C for 10,000 h. Journal of Nuclear Materials, 2013, vol.443, no. 1-3, pp.161-170. doi:10.1016/j.jnucmat.2013.07.023
17. Williams R.O., Paxton H.W. The Nature of Aging Binary Iron-Chromium Alloys Around 500°C. Journal of Iron and Steel Research, 1957, no.185, pp.358-374.
18. Capdevila C., Miller M.K., Russell K.F., Chao J., Gonzalez-Carrasco J.L. Phase separation in PM 2000™ Fe-base ODS alloy: Experimental study at the atomic level. Materials Science and Engineering, 2008, vol.490, no.1-2, pp.277-288. doi:10.1016/j.msea.2008.01.029
19. Miller M.K. Atom probe field ion microscopy. Vacuum, 1994, vol.45, no. 6-7, pp.819-831. doi:10.1016/0042-207X(94)90117-1
20. Kobayashi S., Takasugi T. Mapping of 475°C embrittlement in ferritic Fe–Cr–Al alloys. Scripta Materialia, 2010, vol.63, no. 11, pp.1104-1107. doi:10.1016/j.scriptamat.2010.08.015
21. Li W., Lu S., Hu Q.-M., Mao H., Johansson B., Vitos L. The effect of Al on the 475°C embrittlement of Fe–Cr alloys. Computational Materials Science, 2013, vol.74, pp.101-106. doi:10.1016/j.commatsci.2013.03.021