Авторы
Земсков Е.А.
Организация
Акционерное общество «ГНЦ РФ – Физико-энергетический институт имени А.И. Лейпунского», Обнинск, Россия
  Земсков Е.А.  – ведущий научный сотрудник, кандидат физико-математических наук. Контакты: 249030, Калужская обл., Обнинск, пл. Бондаренко 1. Тел.: (484) 399-50-81; e-mail: 
Аннотация
 В работе на примере метода дискретных ординат проанализирована трансформация непрерывного и дискретного спектра односкоростного уравнения переноса нейтронов. Показано, как при такой дискретизации область непрерывного спектра заполняется отдельными собственными значениями, дискретная часть все точнее описывается в зависимости от порядка квадратуры Гаусса. 
Известные аналитические решения для бесконечной среды с внешним источником, построенные в пространстве обобщенных функций с интегрированием по континууму собственных функций, сравниваются с решениями, полученными в виде разложений по системам конечномерных собственных функций метода ординат. Расчеты выполнены для двух подкритических систем с параметром С=0,9 (размножающая среда с K∝≈0,9) и С=0,5 (слабо размножающая среда) с изотропным и направленным источником нейтронов. 
Расчеты показали, что использование полных систем собственных функций и собственных значений позволяет проанализировать точность детерминистических расчетов нейтронных потоков, в частности точность асимптотических и переходных частей, что важно для многих задач нейтронной физики. 
Ключевые слова
 уравнение переноса нейтронов, матричное представление, система собственных значений и собственных векторов, асимптотическое и переходное решение 
УДК 621.039.512
Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы, 2018, выпуск 2, 2:5

