DOI: 10.55176/2414-1038-2021-2-82-104
Авторы
Курина И.С., Фролова М.Ю., Чесноков Е.А.
Организация
АО «Государственный научный центр Российской Федерации – Физико-энергетический институт имени А.И. Лейпунского», Обнинск, Россия
Курина И.С. – ведущий научный сотрудник, кандидат технических наук, доцент. Контакты: 249033, Калужская обл., Обнинск, пл. Бондаренко, 1. Тел.: +7 (484) 399-86-32; e-mail: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в браузере должен быть включен Javascript..
Фролова М.Ю. – инженер 1 категории.
Чесноков Е.А. – руководитель группы.
Аннотация
В статье приводится обзор известных зарубежных научных публикаций, посвящённых исследованию свойств металлического ядерного топлива на основе U-Zr, по составу близкого к U-10 мас. % Zr, широко используемого в реакторах.
Рассмотрены отличия микроструктуры топлива, изготовленного разными способами: экструзией и литьём. Показано влияние термического отжига на изменение микроструктуры сплава. Представлены фотографии, полученные с помощью оптического и электронного микроскопов, а также кристаллографические данные для двух фаз: α-U и δ-UZr2.
Известные литературные данные свидетельствуют, что плотность богатых ураном U-Zr сплавов соответствует правилу смесей. В качестве теоретической плотности сплава U-10 мас. % Zr (U-22,5 ат. % Zr) следует принять значение 16,2 г/см3.
Приведены результаты термофизических исследований топлива U-10 мас. % Zr с применением метода дифференциальной сканирующей калориметрии (ДСК). Представлены данные по измерениям термического расширения U-Zr сплавов, а также теплопроводности. Большинство данных по теплопроводности либо рассчитаны на основе измеренных плотности, удельной теплоёмкости и температуропроводности, либо получены моделированием.
Ключевые слова
металлическое топливо, сплав U-10 мас. % Zr, экструзия, литьё, микроструктура, отжиг, плотность, фазовый состав, термическое расширение, теплопроводность
Полная версия статьи (PDF)
Список литературы
- Walters L.C., Seidel B.R., Kittel J.H. Performance of metallic fuels and blankets in liquid-metal fast breeder reactors. Nuclear Technology, 1984, vol. 65, no. 1, pp. 179–231.
- Hofman G.L., Walters L.C. Metallic fast reactor fuels. Materials Science and Technology, 1994, vol. 10A, pp. 1–43.
- Hofman G.L., Walters L.C., Bauer T.H. Metallic fast reactor fuels. Progress in Nuclear Energy, 1997, vol. 31, no. 1–2, pp. 83–110.
- Crawford D.C., Porter D.L., Hayes S.L. Fuels for sodium-cooled fast reactors: US perspective. Journal Nuclear Materials, 2007, vol. 371, no. 1, pp. 202–231.
- Burkes D.E., Fielding R.S., Porter D.L., Crawford D.C., Meyer M.K. A US Perspective on Fast Reactor Fabrication Technology and Experience. Part I: Metal Fuels and Assembly Design. Journal Nuclear Materials, 2009, vol. 389, pp. 458–469.
- Walters L.C. Thirty years of fuels and materials information from EBR-II. Journal Nuclear Materials, 1999, vol. 270, pp. 39–48.
- Song H., Kim J.-H., Ko Y.-M., Woo Y.-M., Kim K.-H. and Lee C.-B. Casting Development of Metallic Fuel for SFR. Report on Thirteenth Information Exchange Meeting “Actinide and Fission Product Partitioning and Transmutation”. Seoul, Republic of Korea, 2014, pp. 378–385. NEA/NSC/R(2015)2.
- Banerjee J., Prakasan E.R., Kutty T.R.G., Bhanumurthy K. Trends of publications and patents on metallic fuel development for fast reactors. Current science, 2016, vol. 110, no. 1, pp. 36–43.
- Extrusion technique creates new fuel from depleted uranium. Available at: https://inl.gov/article/new-nuclear-fuel-fabrication-technique-for-eased-extrusion/ (accessed 27.02.2021).
- Blamer B.J. Haracterization of uranium metal alloy fuel forms for advanced nuclear reactor applications. Dr. Sci. Diss. Texas A&M University, 2017. 264 p.
- Irukuvarghula S., Blamer B., Ahn S., Vogel S.C., Losko A.S., McDeavitt S.M. Texture evolution during annealing of hot extruded U-10wt%Zr alloy by in situ neutron diffraction. Journal of Nuclear Materials, 2017, no. 497, pp. 10–15.
- Pace D., Mackowiak B. Extrusion development report. Report of Idaho National Laboratory, 2018, 142 p. INL/EXT-18-44551.
- Fielding R., Mackowiak B., Dexter G., Grover B. Co-Extrusion of Zr Lined U-Zr Alloy Characterization Report. Report of Idaho National Laboratory, 2018, 21 p. INL/EXT-18-44550.
- Yi Xie, Sven C. Vogel, Jason M. Harp, Michael T. Benson, Luca Capriotti. Microstructure Evolution of U-Zr System in A Thermal Cycling Neutron Diffraction Experiment: Extruded U‑10Zr (wt. %). Journal of Nuclear Materials, 2021, vol. 544, p. 152665.
- Hausaman J.S. Hot extrusion of phase uranium-zirconium alloys for TRU burning fast reactors. Master of science diss. Texas A&M University, 2011. 81 p.
- Kim K.-H., Kim J.-H., Oh S.-J., Lee J.-W., Lee H.-J., Lee C.-B. Fabrication of U-10 wt. % Zr metallic fuel rodlets for irradiation test in BOR-60 fast reactor. Science and Technology of Nuclear Installations, vol. 2016, p. 7. Available at: http://dx.doi.org/10.1155/2016/4385925 (accessed 27.02.2021).
- Kim Jong-Hwan, Lee Jung-Won, Park Jeong-Yong. Preparation of metallic fuel rodlets for irradiation testing in the HANARO research reactor. Journal of Radioanalytical and Nuclear Chemistry, 2018, vol. 315, pp. 137–143.
- Ahn S. Comprehensive investigation of the uranium-zirconium alloy sistem: thermophysical properties, phase characterization and ion implantation effects. Dr. Sci. Diss. Texas A&M University, 2013. 326 p.
- McCoy K.M., Huber Z.F., Athon M.T., MacFarlan P.J., Lavender C.A. Thermomechanical Processing of Uranium Alloys with 10 and 50 Weight Percent Zirconium. Report of Pacific Northwest National Laboratory, 2020, 26 p. PNNL-30011.
- McKeown J., Wall M., Hsiung, Turchi P. Report on Characterization of U-10 wt. % Zr Alloy. Report of Livermore National Laboratory, 2012, 17 p. LLNL-TR-534973.
- Basak C.B., Prasad G.J., Kamath H.S., Prabhu N. An evaluation of the properties of As-cast U‑rich U-Zr alloys. Journal of Alloys and Compounds, 2009, vol. 480, pp. 857–862.
- Basak C.B., Keswani R., Prasad G.J., Kamath H.S., Prabhu N. Phase transformations in U‑2 wt. % Zr alloy. Journal of Alloys and Compounds, 2009, vol. 471, pp. 544–552.
- Basak C.B. Microstructural evaluation of U-rich U-Zr alloys under near-equilibrium condition. Journal of Nuclear Materials, 2011, vol. 416, pp. 280–287.
- Rai A.K., Subramanian R., Hajra R.N., Tripathy H., Rengachari M., Saibaba S. Calorimetric Study of Phase Stability and Phase Transformation in U-xZr (x = 2, 5, 10 Wt Pct) Alloys. Metallurgical and Materials Transactions A, 2015, vol. 46, no. 11, pp. 4986–5001.
- Irukuvarghula S., Ahn S., McDeavitt S.M. Decomposition of the g Phase in as-Cast and Quenched U-Zr Alloys. Journal of Nuclear Materials, 2016, vol. 473, pp. 206–217.
- Mukherjee S., Kaity S., Saify M.T., Jha S.K., Pujari P.K. Evidence of zirconium nano-agglomeration in as-cast dilute U-Zr alloys. Journal of Nuclear Materials, 2014, vol. 452, рp. 1–5.
- McKeown J.T., Irukuvarghula S., Ahn S., Wall M.A., Hsiung L.L., McDeavitt S., Turchi P.E.A. Coexistence of the a and d Phases in an as-Cast Uranium-Rich UZr Alloy. Journal of Nuclear Materials, 2013, vol. 436, no. 1–3, pp. 100–104.
- Zhang Y., Wang X., Zeng G., Wang H., Jia J., Sheng L., Zhang P. Microstructural Investigation of as-Cast Uranium Rich U-Zr Alloys. Journal of Nuclear Materials, 2016, vol. 471, pp. 59–64.
- Kim K.-H., Oh S.-J., Kim S.-K., Lee C.-T., Lee C.-B. Microstructural characterization of U-Zr alloy fuel slugs for sodium-cooled fast reactor. Surface and Interface Analysis, 2012, vol. 44, no. 11–12, pp. 1515–1518.
- Basak C. Phase Transformations in U-Zr Alloy System. BARC Newsletter, 2010, no. 316, pp. 60–64.
- Janney D.E., Hayes S.L. Experimentally known properties of U-10Zr alloys: A critical review. Manuscript of Idaho National Laboratory, 2018, 55 p. INL/JOU-17-44020-Revision-0.
- Janney D.E. Metallic Fuels Handbook, Part 1: Alloys Based on U-Zr, Pu-Zr, U-Pu, or U-Pu-Zr, Including Those with Minor Actinides (Np, Am, Cm), Rare-earth Elements (La, Ce, Pr, Nd, Gd), and Y. INL/EXT-15-36520, 2018, Revision 3, Part 1, Idaho National Laboratory, 183 p.
- Porter D.L. Density of U-10wt%Zr Materials. Report of Idaho National Laboratory, 2017, 14 p. INL/EXT-17-41917.
- Rough F.A. An evaluation of data on zirconium-uranium alloys. Report of Battelle Memorial Institute. Columbus, Ohio, 1955, 107 p. BMI-1030.
- Ahn S., Irukuvarghula S., MeDeavitt S.M. Thermophysical investigations of the uranium-zirconium alloy system. Journal of Alloys and Compounds, 2014, vol. 611, pp. 355–362.
- Saller H.A., Dickerson R.F., Murr W.E. Uranium alloys for high-temperature application. Report of Battelle Memorial Institute. Columbus, Ohio, 1956, 47 p. BMI-1098.
- Touloukian Y.S., Kirby R.K., Taylor R.E., Desai P.D. Thermal Expansion: Metallic elements and alloys. Thermophysical Properties of Matte, 1975, vol. 12, 1436 p. IFI/Plenum.
- Lee, Jae-Ho Yang. Thermal Properties Evaluation of U-Zr and U-Zr-Ce Alloys. Transactions of the Korean Nuclear Society Spring Meeting, 2009, pp. 357–358.
- Hofman G.L., Leibovitz L., Kramer J.M., Billone M.C., Koenig J.F. Metallic Fuels Handbook. Report of Argonne National Laboratory. Argonne, 1985, 184 p. ANL-IFR-29.
- Hofman G.L., Billone M.C., Koenig J.F., Kramer J.M., Lambert J.D.B., Leibovitz L., et al. Metallic Fuels Handbook. Report of Argonne National Laboratory. Argonne, 2019, 210 p. ANL-NSE-3.
- Zhou S., Jacobs R., Xie W., Tea E., Hin C., Morgan D. Combined Ab-Initio and Empirical Model of the thermal conductivity of Uranium, Uranium-Zirconium, and Uranium-Molybdenum. Physical Review Materials, 2018, vol. 2, no. 8, p. 56.
- Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G. Thermophysical properties of matter – the TPRC data series. Thermal conductivity – metallic elements and alloys, 1970, vol. 1, p. 1595.
- Steindler M.J., Nelson PA., Johnson C.E. Annual Technical Report for 1986. Report of Argonne National Laboratory, 1987, ANL-87-19, 226 p.
- Kaity S., Banerjee J., Nair M.R., Ravi K., Dash S., Kutty T.R.G., Kumar A., Singh R.P. Microstructural and thermophysical properties of U-6 wt.%Zr alloy for fast reactor application. Journal of Nuclear Materials, 2012, vol. 427, pp. 1–11.
- Nair M.R., Kaity S., Kutty T.R.G., Kumar A., Saify M.T., Jha S.K. Thermal conductivity of U-Zr alloys by transient plane source technique. Proc. Int. conf. on characterization and quality control of nuclear fuels (CQCNF-2012). INIS, India,2012, vol. 43, no. 17, pp. 46–47.
- Banerjee J., Kaity S., Ravi K., Nair M.R., Saify M.T., Keswani R., Kumar A., Prasad G.J. Out-of-pile thermophysical properties of metallic fuel for fast reactors in India. Proc. Int. Conf. “Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13)”. Yekaterinburg, 2015, vol. 46, no. 33, p. 10.
- Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G. Experimental Determination of Thermal Conductivity. Thermal Conductivity, 1970, vol. 10, pp. 13–25.
- Cheon J.S., Oh S.-J., Lee B.-O., Lee C.-B. The effect of RE-rich phase on the thermal conductivity of
U-Zr-Re alloys. Journal of Nuclear Materials, 2009, vol. 385, pp. 559–562.
- Billone M.C., Liu Y.Y., Gruber E.E., Hughes T.H., Kramer J.M. Status of fuel element modeling codes for metallic fuels. Proc. Int. Conf. on Reliable Fuels for Liquid Metal Reactors. Tucson, AZ, 1986,
pp. 5–77.
- Takahashi Y., Yamawaki M., Yamamoto K. Thermophysical properties of uranium-zirconium alloys. Journal of Nuclear Materials, 1988, vol. 154, no. 1, pp. 141–144.
- Matsui T., Natsume T., Naito K. Heat capacity measurements of U0.80Zr0.20 and U0.80Mo0.20 alloys from room temperature to 1300 K. Journal of Nuclear Materials, 1989, vol. 167, pp. 152–159.
- Hin C., Hayes S., Yu J., Papesh C. NEUP Project 14-6767: Thermal Conductivity of Metallic Fuel. Report of Virginia Polytechnic Institute and State University. Moscow, 2018. 47 p.
- Kim Y.S., Cho T.W., Sohn D.-S. Thermal conductivities of actinides (U, Pu, Np, Cm, Am) and uranium-alloys (U-Zr, U-Pu-Zr and U-Pu-TRU-Zr). Journal of Nuclear Materials, 2014, vol. 445, no. 1–3, pp. 272–280.
- Ogata T. Irradiation behavior and thermodynamic properties of metallic fuel. Journal of Nuclear Science and Technology, 2002, vol. 39, pp. 675–681.
- Ogata T. Metal Fuel, in: R.J.M. Konings. Comprehensive Nuclear Materials, Elsevier, 2012, vol. 3, pp. 1–40.
- Hales J.D., Williamson R.L., Novascone S.R., Pastore G., Spencer B.W., Stafford D.S., Gamble K.A., Perez D.M., Gardner R.J., Liu W., Galloway J., Matthews C., Unal C., Carlson N. BISON Theory Manual. The Equations Behind Nuclear Fuel Analysis BISON. Release 1.3. Technical Report of Idaho National Laboratory. Idaho, 2016. 155 p.
- Kalimullah M. The SAS4A/SASSYS-1 Safety Analysis Code System. SSCOMP: Pre-Transient Characterization of Metallic Fuel Pins. Chapter 10. Report of Argonne National Laboratory.Argonne, 2012. 186 p.
- Simunovic S., Ott L.J., Gorti S.B., Nukala P.K., Radhakrishnan B., Turner J.A. Modeling of Gap Closure in Uranium-Zirconium Alloy Metal Fuel – A Test Problem. Report of Oak Ridge National Laboratory. Oak Ridge, 1996. 17 p.
- Okuniewski M.A., Tomar V., Bai X., Deo C.S., Beeler B., Zhang Y. Microstructure, Thermal, and Mechanical Properties Relationships in U and U-Zr Alloys – 16-10821. Final Report of Purdue University. Purdue, 2020. 32 p.
- Chen W., Bai X.-M. Temperature and composition dependent thermal conductivity model for U‑Zr alloys. Journal of Nuclear Materials, 2018, vol. 507, pp. 360–370.
- Fink J.K., Leibowitz L. Thermal conductivity of zirconium. Journal of Nuclear Materials, 1995, vol. 226, no. 1–2, pp. 44–50.
- Hales J., Tonks M.R., Chockalingam K., Williamson R.L. Asymptotic expansion homogenization for multiscale nuclear fuel analysis. Computational Materials Science, 2015, vol. 99, pp. 290–299.
УДК 669.822.5
Вопросы атомной науки и техники. Cерия: Ядерно-реакторные константы, 2021, выпуск 2, 2:6