Авторы
Рыжов С.Н.1, Першуков В.А.2
Организация
1 Национальный исследовательский ядерный университет «МИФИ», Москва, Россия.
2 Госкорпорация «Росатом», Москва, Россия
Рыжов С.Н.1 – аспирант. Контакты: 115522, Москва, Пролетарский пр-т, д. 8, к. 2, кв. 511. Тел.: (999) 773-32-68; e-mail:
Першуков В.А.2 – профессор, доктор физико-математических наук.
Аннотация
Целью данной обзорной работы является рассмотрение и анализ
процесса трансмутации минорных актинидов в ядерных реакторах различного типа, с
учётом особенностей процесса и его влияния на отдельные этапы ядерного
топливного цикла. В работе проводится анализ текущих современных методик
трансмутации и выжигания минорных актинидов (МА) в активных зонах тепловых
реакторов, быстрых реакторов (при гомогенном и гетерогенном размещении) и в
подкритичных системах, управляемых ускорителем протонов, разрабатываемых
различными научными организациями по всему миру с учётом текущих
производственных и технологических возможностей по эффективному обращению с
радиоактивными отходами.
Различные методы утилизации
минорных актинидов в тепловых и быстрых реакторах с помощью
гомогенного и гетерогенного размещения минорных актинидов в активной зоне имеют
различную эффективность для отдельных трансмутируемых нуклидов, а также
оказывают различное влияние как на процесс эксплуатации ядерного реактора с
загрузкой минорных актинидов, так и на последующие этапы ядерного топливного
цикла после выгрузки отработавшего ядерного топлива. В процессе анализа были выявлены
основные проблемы и технологические факторы, препятствующие повышению
эффективности трансмутации.
Совокупность собранных и
проанализированных в данной работе данных, будет использована для создания
расширенной нейтронно-физической модели активной зоны ядерного реактора с
загрузкой минорных актинидов, для оценки эффективности объединённой методики
трансмутации, учитывающей обнаруженные особенности и методы снижения влияния,
ограничивающих эффективность трансмутации факторов.
Ключевые слова
минорные актиниды, РАО, ОЯТ, трансмутация, переработка,
быстрые реакторы, эффективность трансмутации, утилизация минорных актинидов,
гетерогенное размещение, америций, кюрий, нептуний
1. Radioactive waste management programmes in OECD/NEA member countries. National Nuclear Energy Context Profile. Australia, 2009.
2. Radioactive waste management programmes in OECD/NEA member countries. Radioactive Waste Management and Decommissioning in the United Kingdom Report. United Kingdom, 2011.
3. Radioactive waste management programmes in OECD/NEA member countries. National Nuclear Energy Context Profile. Germany, 2016.
4. Radioactive waste management programmes in OECD/NEA member countries. Radioactive Waste Management and Decommissioning in the Netherlands Report. Netherlands, 2007.
5. Radioactive waste management programmes in OECD/NEA member countries. Radioactive Waste Management and Decommissioning in Spain Report. Spain, 2018.
6. Radioactive waste management programmes in OECD/NEA member countries. Radioactive Waste Management and Decommissioning in Canada Report. Canada, 2008.
7. Radioactive waste management programmes in OECD/NEA member countries. Radioactive Waste Management and Decommissioning in the United States of America Report. United States, 2011.
8. Radioactive waste management programmes in OECD/NEA member countries. Radioactive Waste Management and Decommissioning in Finland Report. Finland, 2014.
9. Radioactive waste management programmes in OECD/NEA member countries. Radioactive Waste Management and Decommissioning in France Report. France, 2015.
10. Radioactive waste management programmes in OECD/NEA member countries. Radioactive Waste Management and Decommissioning in Russian Federation Russian Report. Federation, 2014.
11. Публичный годовой отчет «Итоги деятельности Государственной корпорации по атомной энергии «Росатом» за 2020 год». Госкорпорация «Росатом», Москва, 2020.
12. Годовой итоговый отчёт концерна РОСЭНЕРГОАТОМ за 2020. Концерн «Росэнергоатом», Москва, 2020.
13. Публичный годовой отчет «Итоги деятельности Государственной корпорации по атомной энергии «Росатом» за 2019 год». Госкорпорация «Росатом», Москва, 2019.
14. Годовой итоговый отчёт концерна РОСЭНЕРГОАТОМ за 2020. Концерн «Росэнергоатом», Москва, 2019.
15. Отчёт по экологической безопасности ФГУП «ПО «Маяк» за 2017 год. Федеральное государственное унитарное предприятие «Производственное объединение «МАЯК», Озерск, 2017.
16. Gauld I.C., Williams M.L., Michel-Sendis F., Martinez J.S. Integral nuclear data validation using experimental spent nuclear fuel compositions. Nuclear Engineering and Technology, 2017, vol. 49, issue 6, pp. 1226–1233.
17. Salvatores M. Nuclear fuel cycle strategies including Partitioning and Transmutation. Nuclear Engineering and Design, 2005, vol. 235, issue 7, pp. 805–816.
18. Vezzoni B., Gabrielli F., Rineiski A., Fazio C., Salvatores M. Plutonium and Minor Actinides incineration options using innovative Na-cooled fast reactors: Impacting on phasing-out and on-going fuel cycles. Progress in Nuclear Energy, 2015, vol. 82, pp. 58–63.
19. Billone M.C., Burtseva T.A., Chen Y., Han Z. Ductility of M5 and ZIRLO Sibling Pin Cladding. M2SF-20AN010201012/ANL-20/47, Argonne National Laboratory, Lemont, IL, 2020.
20. Honnold P., Montgomery R., Billone M.C., Hanson B. and Saltzstein S. High Level Gap Analysis for Accident Tolerant and Advanced Fuels for Storage and Transportation. M3SF-21SN01020106/SAND2021-4732, Sandia National Laboratories, Albuquerque, NM, 2021.
21. Schaller R., Knight A., Bryan C., Nation B., Montoya T. and Katona R. FY20 Status Report: SNF Interim Storage Canister Corrosion and Surface Environment Investigations. M2SF-21SN010207055/SAND2020-12663R, Sandia National Laboratories, Albuquerque, NM, 2020.
22. Teague M., Saltzstein S., Hanson B., Sorenson K. and Freeze G.A. Gap Analysis to Guide DOE R&D in Supporting Extended Storage and Transportation of Spent Nuclear Fuel: An FY2019 Assessment. SAND2019-15479R, Sandia National Laboratories, Albuquerque, NM, 2019.
23. NEA. Radioactive waste management and decommissioning programmes in NEA member countries. Available at: https://www.oecd-nea.org/jcms/pl_33688/radioactive-waste-managementprogrammes-in-nea-member-countries?histstate=1& (accessed 21.04.2021).
24. Gautier G.-M., Morin F., Dechelette F., Sanseigne E., Chabert C. The technical and economic impact of minor actinide transmutation in a sodium fast reactor. Proc. of the International Congress on Advances in Nuclear Power Plants, ICAPP 2012. Chicago, USA, 2012, vol. 4, pp. 2419–2428.
25. Juárez, L.-C., François, J.-L. Study of the homogeneous and heterogeneous Am transmutation in an ELFR-like reactor loaded with nitride fuel. Annals of Nuclear Energy, 2019, vol. 127, pp. 19–29.
26. Bejaoui S., Helfer T., Bendotti S., Lambert T. Description and thermal simulation of the DIAMINO irradiation experiment of transmutation fuel in the OSIRIS reactor. Progress in Nuclear Energy, 2019, vol. 113, pp. 28–44.
27. Guo H., Kooyman T., Sciora P., Buiron L. Application of Minor Actinides as Burnable Poisons in Sodium Fast Reactors. Nuclear Technology, 2019, vol. 205, pp. 1447–1459.
28. Gallais-During A., Delage F., Béjaoui S., D'Agata E., Sabathier C. Outcomes of the PELGRIMM project on Am-bearing fuel in pelletized and spherepac forms. Journal of Nuclear Materials, 2018, vol. 512, pp. 214–226.
29. Wallenius J., Bortot S. A small lead-cooled reactor with improved Am-burning and non-proliferation characteristics. Annals of Nuclear Energy, 2018, vol. 122, pp. 193–200.
30. Gabrielli F., Rineiski A., Vezzoni B., Fazio C., Salvatores M., ASTRID-like Fast Reactor Cores for Burning Plutonium and Minor Actinides. Energy Procedia, 2015, vol. 71, pp. 130–139.
31. Kawashima K., Sugino K., Ohki S., Okubo T. Design study of a low sodium void reactivity core to accommodate degraded TRU fuel. Nucl. Technol. 2013, vol. 3, no. 1185, pp. 270–280.
32. Kooyman T., Buiron L. Sensitivity analysis of minor actinides transmutation to physical and technological parameters. EPJ Nuclear Sciences & Technologies, 2015, vol. 1, pp. 1–8.
33. Compendium of Dose Coefficients based on ICRP Publication 60. ICRP Publication 119. Ann. ICRP, 2012, no. 141.
34. Bussac J., Reuss P. Traité de neutronique: Physique et calcul des réacteurs nucléaires avec application aux réacteurs à eau pressurisée et aux réacteurs à neutron rapides. Paris: Hermann, 1985. (in French)
35. Kolarik Z., Schuler R. Separation of neptunium from plutonium and uranium in the PUREX process. Proc. of Extraction '84: Symposium on Liquid-Liquid Extraction Science, Scotland, 27–29 November 1984, pp. 83–90. DOI: https://doi.org/10.1016/B978-0-08-031439-6.50010-6.
36. Sanchez R., Loaiza D., Kimpland R., Hayes D., Cappiello C., Chadwick M. Criticality of a 237Np sphere. Nucl. Sci. Eng., 2008, vol. 158, no. 11, pp. 1–14.
37. Sagara H., Saito M., Peryoga Y., Ezoubtchenko A., Takivayev A. Denaturing of plutonium by transmutation of minor actinides for enhancement of proliferation resistance. J. Nucl. Sci. Technol., 2005, vol. 42, no. 12, pp. 161–168.
38. Coquelet-Pascal C., Meyer M., Girieud R., Tiphine M., Eschbach R., Chabert C., Garzenne C., Barbrault P., Gannaz B., Durpel L.V.D., Favet D., Caron-Charles M., Carlier B., Lefèvre J.-C. Scenarios for Fast Reactors Deployment with Plutonium Recycling. Proc. of Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, 2013, Track 8 Deployment and Scenarios, pp. 62–72.
39. Rieder R., Gellert R., Brückner J., Klingelhöfer G., Dreibus G., Yen A., Squyres S.W. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. J. Geophys. Res., 2003, vol. 1108, p. 8066.
40. Chabert C., Tiphine M., Krivtchik G., Allou A., Saturnin A., Eschbach R. Considerations on industrial feasibility of scenarios with the progressive deployment of Pu multirecycling in SFRs in the French nuclear power fleet. Proc. Int. Conf. Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL15), Paris, 2015, Paper 5351, pp. 1–9.
41. Chen S., Yuan C. Transmutation study of minor actinides in mixed oxide fueled typical pressurized water reactor assembly. Journal of Nuclear Engineering and Radiation Science, 2018, vol. 4, issue 4, article no. 041017.
42. Liu B., Wang K., Tu J., Liu F., Huang L., and Hu W. Transmutation of Minor Actinides in the Pressurized Water Reactors. Annals of Nuclear Energy, 2014, vol. 64, pp. 86–92.
43. Hu W., Liu B., Ouyang X., Tu J., Liu F., Huang L., Fu J., and Meng H. Minor Actinide Transmutation on PWR Burnable Poison Rods. Annals of Nuclear Energy, 2015, vol. 77, pp. 74–82.
44. Wang K., Li Z., She D., Xu Q., Qiu Y., Yu J., Sun J., Fan X., and Yu G. RMC-CA Monte Carlo Code for Reactor Core Analysis Annals of Nuclear Energy, 2015, vol. 82, pp. 121–129.
45. Chen Y., Martin G., Chabert C., He H., Ye G.-A. Prospects in China for nuclear development up to 2050. Progress in Nuclear Energy, 2018, vol. 103, pp. 81–90.
46. Martin G., Guyot M., Laugier F., Chabert C., Eschbach R. French scenarios toward fast plutonium multi-recycling in PWR. Proc. of the 2018 International Congress on Advances in Nuclear Power Plants, ICAPP 2018, 2018, pp. 103–112.
47. Казанский Ю.А., Иванов Н.В., Романов М.И. Результаты трансмутации малых актинидов в спектре нейтронов реакторов на тепловых и быстрых нейтронах. Известия вузов. Ядерная энергетика , 2016, № 2, с. 77–86.
48. Казанский Ю.А., Клинов Д.А. Эффективность трансмутации осколков деления. Известия вузов. Ядерная энергетика, 2000, № 4, с. 38–46.
49. Ohki S., Sato I., Mizuno T., Hayashi H., Tanaka K. Japan Atomic Energy Agency. An effective loading method of americium targets in fast reactors. Proc. of the Int. Conf. Advanced Nuclear Fuel Cycles and Systems, Japan, 2007, pp. 1280–1288.
50. Takeda T., Shimazu Y., Hibi K., Fujimura K. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor. Proc. of the Int. Conf. on the Physics of Reactors 2012, PHYSOR 2012: Advances in Reactor Physics, Japan, 2012, vol. 5, pp. 3853–3860.
51. Buiron L., Fontaine B., Andriolo L. Transmutation abilities of the SFR low void effect core concept “CFV” 3600 MWth. Proc. of the Int. Congress on Advances in Nuclear Power Plants 2012, ICAPP 2012, France, 2012, vol. 1, pp. 631–637.
52. Takeda T. Minor actinides transmutation performance in a fast reactor. Annals of Nuclear Energy, 2016, vol. 95, no. 1, pp. 48–53.
53. Fu P., Liu B., Zhang X. Study on the Effect of MA Nuclides Transmutation on Safety in Lead-Cooled Fast Reactors. Nuclear Power Engineering, 2021, vol. 42, no. 5, pp. 71–75.
54. Hoffman E.A., Stacey W.M. Nuclear and fuel cycle analysis for a fusion transmutation of waste reactor. Fusion Engineering and Design, 2002, vol. 63–64, pp. 87–91.
55. Camarcat N., Lecarpentier D., Lavaud F., Lemaire P. Plutonium multi recycling in pressurised water reactors of the EPR type using laser isotope separation of Pu-242. Annals of Nuclear Energy, 2019, vol. 129, pp. 399–411.
56. Kooyman T., Buiron L., Rimpault G. Analysis of the impacts of homogeneous minor actinides loading in low void effect sodium fast reactor cores. Annals of Nuclear Energy, 2019, vol. 124, pp. 572–578.
57. Nagaso M., Komatitsch D., Moysan J., Lhuillier C. Wave propagation simulation in the upper core of sodium-cooled fast reactors using a spectral-element method for heterogeneous media. EPJ Web of Conferences, 2018, vol. 170, p. 03006.
58. Martin G. Study of a mixed fleet of breeder SFR and EPR supplied with LEU and MOX fuels to balance the plutonium inventory. Proc. of the 2018 International Congress on Advances in Nuclear Power Plants, ICAPP 2018, 2018, pp. 113–117.
59. Ларионов И.А., Лопаткин А.В., Лукасевич И.Б., Мороко В.И., Попов В.Е. Гомогенная трансмутация 237Np, 241Am, 243Am в быстром реакторе со свинцовым теплоносителем. Атомная Энергия, 2020, т. 129, вып. 6, c. 316–320.
60. Макеева И.Р., Попов И.С., Модестов Д.Г., Файрушин А.Г., Вербицкая О.В., Пчелинцева С.В., Сырцова Б.Г., Кузнецова О.В., Шмидт О.В., Родина Е.А., Егоров А.В., Хомяков Ю.С., Швецов Ю.Е. Программный комплекс для моделирования замыкания топливного цикла в рамках ОДЭК и ПЭК. Версия 2.3 (ПК РТМ-2.3). Свидетельство о государственной регистрации программы для ЭВМ № 2021618800, 2021.
61. Гулевич А.В., Елисеев В.А., Клинов Д.А., Коробейникова Л.В., Крячко М.В., Першуков В.А., Троянов В.М. Возможность выжигания америция в быстрых реакторах. Атомная энергия, 2020, т. 128, вып. 2, с. 88–94.
62. Kral D., Zeman M., Adam J., Katovsky K., Vespalec R., Tichy P., Khushvaktov J., Solnyshkin A. Investigation of thorium utilization in accelerator driven systems. Proc. of the 19th Int. Sci. Conf. on Electric Power Engineering, EPE 2018. Brno, Czech Republic, 16–18 May 2018, pp. 1–6, doi: 10.1109/EPE.2018.8395954.
63. Zeman M., Katovsky K., Adam J., Baldin A., Furman W., Khushvaktov J. et al. Determination of the neutron flux inside spallation target with the use of threshold activation detectors in 2016. 17th International Scientific Conference on Electric Power Engineering (EPE), Prague, Czech Republic, 16–18 May 2016, pp. 1–6.
64. Adam J., Chilap V., Furman V., Kadykov M., Khushvaktov J., Pronskikh V. et al. Study of secondary neutron interactions with 232Th, 129I, and 127I nuclei with the uranium assembly “QUINTA” at 2, 4, and 8 GeV deuteron beams of the JINR nuclotron accelerator. Applied Radiation and Isotopes, 2016, vol. 107, pp. 225–233.
65. Kral D., Zeman M., Katovsky K., Adam J., Vespalec R., Tichy P., Khushvaktov J., Solnyshkin A. Investigation of thorium utilization in accelerator driven nuclear reactors. 19th International Scientific Conference on Electric Power Engineering (EPE), Brno, Czech Republic, 16–18 May 2018, pp. 1–6, doi: 10.1109/EPE.2018.8395987.
66. Pyeon C.H., Yamanaka M., Oizumi A., Uesugi T., Ishi Y. First nuclear transmutation of 237Np and 241Am by accelerator-driven system at Kyoto University Critical Assembly. Journal of Nuclear Science and Technology, 2019, vol. 56, no. 8, pp. 684–689.
67. Meng H.-Y., Yang Y.-W., Zhao Z.-L., Gao Q.-Y., Gao Y.-C. Physical studies of minor actinide transmutation in the accelerator-driven subcritical system. Nuclear Science and Techniques, 2019, vol. 30, no. 6, article 91 pp. 1–9.
68. Wallenius J. Maximum efficiency nuclear waste transmutation. Annals of Nuclear Energy, 2019, vol. 125, pp. 74–79.
69. Sugawara T., Takei H., Tsujimoto K. Investigations of accelerator reliability and decay heat removal for accelerator-driven system. Annals of Nuclear Energy, 2019, vol. 125, p. 242–248.
70. Humphrey U.E., Khandaker M.U. Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects. Renewable and Sustainable Energy Reviews, 2018, vol. 97, pp. 259–275.
71. Ashraf O., Tikhomirov G.V. A methodology for evaluating the transmutation efficiency of long-lived minor actinides. Nuclear Engineering and Design, 2021, vol. 377, pp. 111–128.
72. Sciora P., Buiron L., Rimpault G., Varaine F. A break even oxide fuel core for an innovative French sodium-cooled fast reactor: neutronic studies results. Proc. of the GLOBAL 2009 congress – The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives. Paris, September 6–11, 2009, Paper 9528, pp. 312–314.
73. Rimpault G. The ERANOS code and data system for fast reactor neutronic analyses. Proc. of the PHYSOR conference. Seoul, 2002, pp. 1–14.
74. The JEFF-3.1 Nuclear Data Library. NEA No. 6190, OECD, 2006.
75. Kooyman T., Buiron L., Rimpault G. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources. EPJ Nuclear Sciences & Technologies, 2017, vol. 3, article 7, pp. 1–9.
76. Kooyman T., Buiron L., Valentin B., Rimpault G., Delage F. Pre-design optimization of a target assembly for minor actinides transmutation. Proc. of the 14th IEMPT, San Diego, 2016, pp. 1–13.
77. Timothée Kooyman, Laurent Buiron, Gérald Rimpault. A comparison of curium, neptunium and americium transmutation feasibility. Annals of Nuclear Energy, 2017, vol. 112, pp. 748–758.
78. Massara S., Tommasi J., Vanier M., Köberl O. Dynamics of critical dedicated cores for minor actinide transmutation. Nucl. Technol., 2005, vol. 149, no. 12, pp. 150–174.
79. Patricot C., Kepisty G., Ammar K., Campioni G., Hourcade E. Thermal-hydraulics/thermal-mechanics temporal coupling for unprotected loss of flow accidents simulations on a SFR. EPJ Nucl. Sci. Technol., 2016, vol. 2, no. 12, article 2, pp. 1–8.
80. Wu G., Jin M., Li Y. Primary pump coast-down characteristics analysis in lead cooled fast reactor under loss of flow transient. Annals of Nuclear Energy, 2017, vol. 103, pp. 1–9.
81. Fujimura K., Itooka S., Ohki S., Takeda T. Core concept of minor actinides transmutation fast reactor with improved safety. Proc. of the 2017 International Congress on Advances in Nuclear Power Plants, ICAPP 2017 – A New Paradigm in Nuclear Power Safety, Fukui/Kyoto, Japan, 2017, pp. 1–6.
82. Vezzoni B., Gabrielli F., Rineiski A., Boccaccini C.M., Zhang D. Safety-related optimization and analyses of an innovative fast reactor concept. Sustainability, 2012, vol. 4, no. 6, pp. 1274–1291.
83. Du X., Zheng Y., Cao L., Wu H. Transient analysis of MOX-3600 and MET-1000 sodium-cooled fast reactor using SARAX code system. Annals of Nuclear Energy, 2018, vol. 121, pp. 324–334.
84. Lemehov S., Messaoudi N., Van Uffelen P., Aït Abderrahim H. Modelling the behaviour of oxide fuels containing minor actinides with urania, thoria and zirconia matrices in an accelerator-driven system. Journal of Nuclear Materials, 2003, vol. 139, pp. 131–141.
УДК 621.039
Вопросы атомной науки и техники. Cерия: Ядерно-реакторные константы, 2022, № 2, c. 5–31