Авторы
Захаров М.Ю., Тихомиров Г.В.
Организация
Национальный исследовательский ядерный университет «МИФИ», Москва, Россия
Захаров М.Ю. – аспирант кафедры теоретической и экспериментальной физики ядерных реакторов. Контакты: 115409, Москва, Каширское ш., д. 31. Тел.: (911) 480-47-10; e-mail:
Аннотация
В настоящее время самой распространенной технологией среди реакторов четвертого поколения являются быстрые реакторы с жидкометаллическим теплоносителем. Они предлагают более оптимизированный расход ядерного топлива, утилизацию ядерных отходов и принципиальную возможность замыкания ядерного топливного цикла. Однако данная технология все еще находится на стадии активного внедрения и одним из главных вопросов остается поведение жидкого металла в контурах реакторных установок. Наибольший интерес представляет собой моделирование переноса тепла в активной зоне, которая состоит из множества ТВС. Расчеты на основе CFD позволяют не только воспроизводить результаты экспериментов, но и дополнять их новыми данными. Настоящая работа представляет собой систематический обзор современных подходов и результатов теплогидравлического моделирования ТВС для быстрых реакторов с помощью CFD. Рассмотрены подходы RANS, LES и DNS с точки зрения описания турбулентности, воспроизведения анизотропии течения жидких металлов, учета особенностей их теплообмена и требований к вычислительным ресурсам, например количество ячеек в сетке. Продемонстрировано влияние детализации геометрии проволочной навивки на возможные результаты. Приведены актуальные способы описания турбулентного теплового потока в моделях RANS и LES. Проведено сравнение различных моделей турбулентности. Затронуты вопросы масштабирования результатов малостержневых моделей на полномасштабные ТВС. Обобщены результаты и современные тенденции CFD-моделирования для ТВС быстрых реакторов, как с проволочной навивкой, так и без нее. Полученные результаты могут служить основой для выбора оптимального метода моделирования при разработке и анализе активных зон быстрых реакторов.
Ключевые слова
быстрые реакторы, ТВС, тепловыделяющие сборки, вычислительная гидродинамика, CFD, RANS, LES, DNS, моделирование, жидкий металл, свинец, натрий, теплообмен, турбулентное число Прандтля, турбулентность, обзор
- Веселов Ф.В., Макарова А.С., Новикова Т.В., Толстоухов Д.А., Атнюкова П.В. Конкурентные перспективы АЭС в формировании низкоуглеродного профиля российской электроэнергетики. Энергетическая политика, 2017, № 3, с. 68–77.
- Филиппов С.П. Переход к углеродно-нейтральной экономике: возможности и пределы, актуальные задачи. Теплоэнергетика, 2024, № 1, с. 21–40. DOI: https://doi.org/10.56304/S004036362401003X.
- Сухарева Е.В., Шиндина Т.А., Рукина Е.И. Сравнительный анализ преимуществ и рисков атомной энергетики в контексте обеспечения энергетической безопасности. Экономика и управление: проблемы, решения, 2024, т. 9, № 6 (147), с. 73–79. DOI: https://doi.org/10.36871/ek.up.p.r.2024.06.09.008.
- Nuclear Power in the World Today – World Nuclear Association. Доступно на: https://world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today (дата обращения 19.05.2025).
- Bozkaya Ş., Onifade S.T., Duran M.S. Nuclear energy utilization and the expectations of emission-reduction gains: Nuclear energy utilization and the expectations of emission-reduction gains: Empirical evidence from economic trajectory of selected utilizing states. Progress in Nuclear Energy, 2025, vol. 178. p. 105526. DOI: https://doi.org/10.1016/j.pnucene.2024.105526.
- Адамов Е.О., Каплиенко А.В., Орлов В.В., Смирнов В.С., Лопаткин А.В., Лемехов В.В., Моисеев А.В. Быстрый реактор со свинцовым теплоносителем БРЕСТ: от концепции к реализации технологии. Атомная энергия, 2020, т. 129, № 4, с. 185–194.
- Тузов А.А., Троянов В.М., Гулевич А.В., Гурская О.С., Декусар В.М., Мосеев А.Л., Симоненко В.А. К вопросу о начальном этапе замыкания ЯТЦ двухкомпонентной ядерной энергетики России. Атомная энергия, 2022, т. 133, № 2, с. 71–76.
- Троянов В.М., Гулевич А.В., Гурская О.С., Декусар В.М., Елисеев В.А., Коробейников В.В., Мосеев А.Л. Системные возможности быстрых натриевых реакторов в двухкомпонентной ядерной энергетике. Известия высших учебных заведений. Ядерная энергетика, 2024, № 1, с. 5–17. DOI: https://doi.org/10.26583/npe.2024.1.01.
- Agbevanu K.T., Debrah S.K., Arthur E.M., Shitsi E. Liquid metal cooled fast reactor thermal hydraulic research development: A review. Heliyonm, 2023, vol. 9, no. 6, p. e16580. DOI: https://doi.org/10.1016/j.heliyon.2023.e16580.
- Кузина Ю.А., Сорокин А.П. Актуальные вопросы моделирования теплогидравлических процессов в реакторах на быстрых нейтронах. Известия вузов. Ядерная энергетика, 2024, № 2, c. 41–58. DOI: https://doi.org/10.26583/npe.2024.2.04.
- Василенко В.А., Мигров Ю.А., Волкова С.Н., Юдов Ю.В., Данилов И.Г., Коротаев В.Г., Кутьин В.В., Бондарчик Б.Р., Бенедиктов Д.В. Опыт создания и основные характеристики теплогидравлического расчетного кода нового поколения КОРСАР. Теплоэнергетика, 2002, № 11, с. 11–16.
- Mosunova N.A., Alipchenkov V.M., Pribaturin N.A., Strizhov V.F., Usov E.V., Lobanov P.D, Afremov D.A., Semchenkov A.A., Larin I.A. Lead coolant modeling in system thermal-hydraulic code HYDRA-IBRAE/LM and some validation results. Nuclear Engineering and Design, 2020, vol. 359, p. 110463. DOI: https://doi.org/10.1016/j.nucengdes.2019.110463.
- Schöffel P. et al. ATHLET 3.4.0 User’s Manual, 2023. Доступно на: https://www.researchgate.net/publication/376751822_ATHLET_340_User's_Manual (дата обращения 19.05.2025).
- Mesina G.L. A History of RELAP Computer Codes. Nuclear Science and Engineering, 2016, vol. 182, no. 1, pp. V–IX. DOI: https://doi.org/10.13182/NSE16-A38253.
- Асмолов В.Г., Блинков В.Н., Мелихов В.И. и др. Cовременное состояние и тенденции развития системных теплогидравлических кодов за рубежом. Теплофизика высоких температур, 2014, т. 52, № 1, с. 105.
- Василенко В.А., Мигров Ю.А., Семакин С.Г., Кастерин Д.С., Мицкевич А.В. Направления развития системных теплогидравлических расчетных кодов нового поколения. Технологии обеспечения жизненного цикла ядерных энергетических установок, 2022, № 1 (27), с. 54–72. DOI: https://doi.org/10.52069/2414-5726_2022_1_27_54.
- Pucciarelli A., Toti A., Castelliti D. et al. Coupled system thermal Hydraulics/CFD models: General guidelines and applications to heavy liquid metals. Annals of Nuclear Energy, 2021, vol. 153, p. 107990. DOI: https://doi.org/10.1016/j.anucene.2020.107990.
- Zhang K. The multiscale thermal‐hydraulic simulation for nuclear reactors: A classification of the coupling approaches and a review of the coupled codes. International Journal of Energy Research, 2020, vol. 44, no. 5, pp. 3295–3315. DOI: https://doi.org/10.1002/er.5111.
- Liu J., Song P., Zhang D. et al. Thermal-hydraulic research on rod bundle in the LBE fast reactor with grid spacer. Nuclear Engineering and Technology, 2022, vol. 54, no. 7, pp. 2728–2735. DOI: https://doi.org/10.1016/j.net.2022.01.026.
- Chandra L., Roelofs F., Houkema M. et al. A stepwise development and validation of a RANS based CFD modelling approach for the hydraulic and thermal-hydraulic analyses of liquid metal flow in a fuel assembly. Nuclear Engineering and Design, 2009, vol. 239, no. 10, pp. 1988–2003. DOI: https://doi.org/10.1016/j.nucengdes.2009.05.022.
- Manservisi S., Menghini F. A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals. International Journal of Heat and Mass Transfer, 2014, vol. 69, pp. 312–326. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.017.
- Сорокин А.П., Кузина Ю.А., Денисова Н.А. Экспериментальное моделирование процессов гидродинамики и теплообмена в реакторах с тяжелыми жидкометаллическими теплоносителями. Вопросы атомной науки и техники. Серия: ядерно-реакторные константы, 2019, № 1, с. 21–51.
- Bestion D. The structure of system thermal-hydraulic (SYS-TH) code for nuclear energy applications. Thermal-Hydraulics of Water Cooled Nuclear Reactors, Woodhead Publishing, 2017, pp. 639–727. DOI: https://doi.org/10.1016/B978-0-08-10066-7.00011-7.
- Сорокин А.П., Кузина Ю.А., Денисова Н.А. Гидродинамика и теплообмен в ТВС активной зоны быстрых реакторов с спиральными проволочными навивками на твэлах. Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы, 2022, № 1, с. 189–209.
- Deck S., Gand F., Brunet V., Ben Khelil S. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. DOI: https://doi.org/10.1098/rsta.2013.0325.
- Снегирев А.Ю. Высокопроизводительные вычисления в технической физике. Численное моделирование турбулентных течений: учебное пособие для студентов высших учебных заведений, обучающихся по направлению подготовки 140400 «Техническая физика», Санкт-Петербург: Изд-во Политехн. Ун-та, 2008. 143 c. Доступно на: https://cfd.spbstu.ru/agarbaruk/doc/ 2009_snegirev_vysokoproizvoditelnye-vychisleniya-v-tekhnicheskoj-fizike-chislennoe-modelirovanie-turbulentnyh-techenij.pdf (дата обращения 19.05.2025).
- Fornberg B. A Practical Guide to Pseudospectral Methods: Cambridge Monographs on Applied and Computational Mathematics. Cambridge: Cambridge University Press, 1996.
- Shams A., Roelofs F., Komen E.M.J., Baglietto E. Optimization of a pebble bed configuration for quasi-direct numerical simulation. Nuclear Engineering and Design, 2012, vol. 242, pp. 331–340. DOI: https://doi.org/10.1016/j.nucengdes.2011.10.054.
- Komen E., Shams A., Camilo L., Koren B. Quasi-DNS capabilities of OpenFOAM for different mesh types. Computers & Fluids, 2014, vol. 96, pp. 87–104. DOI: https://doi.org/10.1016/j.compfluid.2014.02.013.
- Trane D., Grespan M., Angeli D. Comparison between DNS and RANS approaches for liquid metal flows around a square rod bundle. Journal of Physics: Conference Series, 2024, vol. 2766, no. 1, p. 012009. DOI: https://doi.org/10.1088/1742-6596/2766/1/012009.
- Ambekar, Schwarzmeier C., Rüde U., Buwa V.V. Particle‐resolved turbulent flow in a packed bed: RANS, LES, and DNS simulations. AIChE Journal, 2023, vol. 69, no. 1, p. e17615. DOI: https://doi.org/10.1002/aic.17615.
- Hami K. Turbulence Modeling a Review for Different Used Methods. International Journal of Heat & Technology, 2021, vol. 39, no. 1, pp. 227–234. DOI: https://doi.org/10.18280/ijht.390125.
- Qin S., Yang Y., Huang Y., Mei X. et al. Is a direct numerical simulation (DNS) of Navier – Stokes equations with small enough grid spacing and time-step definitely reliable/correct? Journal of Ocean Engineering and Science, 2024, vol. 9, no. 3, pp. 293–310. DOI: https://doi.org/10.1016/j.joes.2024.04.002.
- Катковский С.Е. О необходимости верификации и валидации методов прямого численного моделирования вычислительной гидродинамики. Ядерная и радиационная безопасность, 2021, № 3 (101), с. 16–25.
- Smagorinsky J. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 1963, vol. 91, no. 3, pp. 99–164. DOI: https://doi.org/10.1175/1520–0493(1963)091<0099:GCEWTP>2.3.CO;2.
- Kim M., Lim J., Kim S., Jee S., Park D. Assessment of the wall-dapting local eddy-viscosity model in transitional boundary layer. Computer Methods in Applied Mechanics and Engineering, 2020, vol. 371, p. 113287. DOI: https://doi.org/10.1016/j.cma.2020.113287.
- Волков К.Н., Емельянов В.Н. Моделирование крупных вихрей в расчетах турбулентных течений. М: ФИЗМАТЛИТ, 2008. 368 с.
- Spalart P.R. Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 2000, vol. 21, no. 3, pp. 252–263. DOI: https://doi.org/10.1016/S0142-727X(00)00007-2.
- Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc. of the Royal Society A: Mathematical, Physical and Engineering Sciences. London, 1995. DOI: https://doi.org/10.1098/rspa.1995.0116.
- Wilcox D. Turbulence Modeling for CFD, La Canada: DCW Industries, 2006. 515 p. Доступно на: https://cfd.spbstu.ru/agarbaruk/doc/2006_Wilcox_Turbulence-modeling-for-CFD.pdf (дата обращения 19.05.2025).
- Schmitt F.G. About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique, 2007, vol. 335, no. 9, pp. 617–627. DOI: https://doi.org/10.1016/j.crme.2007.08.004.
- Launder B., Spalding D. Lectures in mathematical models of turbulence. London, academic Press, 1972. 175 p.
- Menter F. Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. Proc. Of 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference: Fluid Dynamics and Co-located Conferences. Orlando, FL, USA, 1993. DOI: https://doi.org/10.2514/6.1993-2906.
- Launder B.E., Reece G.J., Rodi W. Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 1975, vol. 68, no. 3, pp. 537–566. DOI: https://doi.org/10.1017/S0022112075001814.
- Larsson J., Kawai S., Bodart J., Bermejo-Moreno I. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews, 2016, vol. 3, no. 1, pp. 15–00418. DOI: https://doi.org/10.1299/mer.15-00418.
- Bose S.T., Park G.I. Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. Annual Review of Fluid Mechanics, 2018, vol. 50, pp. 535–561. DOI: https://doi.org/10.1146/annurev-fluid-122316-045241.
- Heinz S. Unified turbulence models for LES and RANS, FDF and PDF simulations. Theoretical and Computational Fluid Dynamics, 2007, vol. 21, no. 2, pp. 99–118. DOI: https://doi.org/10.1007/s00162-006-0036-8.
- Козелков А.С., Курулин В.В., Тятюшкина Е.С., Пучкова О.Л. Моделирование турбулентных течений вязкой несжимаемой жидкости на неструктурированных сетках с использованием модели отсоединенных вихрей. Математическое моделирование, 2014, т. 26, № 8, с. 81–96.
- Spalart P.R., Deck S., Shur M.L. et al. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics, 2006, vol. 20, no. 3, pp. 181–195. DOI: https://doi.org/10.1007/s00162-006-0015-0.
- Shur M.L. An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows. Flow, Turbulence and Combustion, 2015, vol. 95, no. 4, pp. 709–737. DOI: https://doi.org/10.1007/s10494-015-9618-0.
- He Y., Li Q., Wang Y., Tang G. Lattice Boltzmann method and its applications in engineering thermophysics. Chinese Science Bulletin, 2009, vol. 54, no. 22, pp. 4117–4134. DOI: https://doi.org/10.1007/s11434-009-0681-6.
- Sagaut P. Toward advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: Theoretical formulations: Mesoscopic Methods in Engineering and Science. Computers & Mathematics with Applications, 2010, vol. 59, no. 7, pp. 2194–2199. DOI: https://doi.org/10.1016/j.camwa.2009.08.051.
- Chen S., Xia Z., Pei S. et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. Journal of Fluid Mechanics, 2012, vol. 703, pp. 1–28. DOI: https://doi.org/10.1017/jfm.2012.150.
- Xu Q., Yang Y. Reynolds stress constrained large eddy simulation of separation flows in a U-duct. Propulsion and Power Research, 2014, vol. 3, no. 2, pp. 49–58. DOI: https://doi.org/10.1016/j.jppr.2014.05.002.
- Zhao Y., Xia Z., Shi Y. et al. Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Physics of Fluids, 2014, vol. 26, no. 9, p. 095103. DOI: https://doi.org/10.1063/1.4895589.
- Girimaji S.S. Partially-Averaged Navier – Stokes Model for Turbulence: A Reynolds-Averaged Navier – Stokes to Direct Numerical Simulation Bridging Method. Journal of Applied Mechanics, 2005, vol. 73, no. 3, pp. 413–421. DOI: https://doi.org/10.1115/1.2151207.
- Girimaji S.S., Jeong E., Srinivasan R. Partially Averaged Navier – Stokes Method for Turbulence: Fixed Point Analysis and Comparison With Unsteady Partially Averaged Navier – Stokes. Journal of Applied Mechanics, 2005, vol. 73, no. 3, pp. 422–429. DOI: https://doi.org/10.1115/1.2173677.
- Menter F.R., Egorov Y. Scale Adaptive Simulation Model using Two-Equation Models. Proc. Of 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005. DOI: https://doi.org/10.2514/6.2005-1095.
- Menter F.R., Egorov Y. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description. Flow, Turbulence and Combustion, 2010, vol. 85, no. 1, pp. 113–138. DOI: https://doi.org/10.1007/s10494-010-9264-5.
- Адамьян Д.Ю., Стрелец М.Х., Травин А.К. Эффективный метод генерации синтетической турбулентности на входных границах LES области в рамках комбинированных RANS-LES подходов к расчету турбулентных течений. Математическое моделирование, 2011, т. 23, № 7, с. 3–19.
- Shur M.L., Spalart P.R., Strelets M.K., Travin A.K. Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems. Flow, Turbulence and Combustion, 2014, vol. 93, no. 1, pp. 63–92. DOI: https://doi.org/10.1007/s10494-014-9534–8.
- Kozelkov A.S., Krutyakova O.L., Kurkin A.A., Kurulin V.V., Tyatyushkina, E.S. Zonal RANS-LES approach based on an algebraic reynolds stress model. Fluid Dynamics, 2015, vol. 50, no. 5, pp. 621–628. DOI: https://doi.org/10.1134/S0015462815050038.
- Grötzbach G. Challenges in low-Prandtl number heat transfer simulation and modelling. Nuclear Engineering and Design, 2013, vol. 264, pp. 41–55. DOI: https://doi.org/10.1016/j.nucengdes.2012.09.039.
- Roelofs F., Shams A., Otic I. et al. Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows. Nuclear Engineering and Design, 2015, vol. 290, pp. 99–106. DOI: https://doi.org/10.1016/j.nucengdes.2014.11.006.
- Кириллов П.Л. Теплообмен в турбулентном потоке. Ч. 1. Турбулентное число Прандтля. Атомная Энергия, 2017, т. 122, № 3, с. 133–144.
- Aoki S. A consideration on the heat transfer in liquid metal. Bulletin of the Tokyo Institute of Technology, 1963, no. 54.
- Reynolds A.J. The prediction of turbulent Prandtl and Schmidt numbers. International Journal of Heat and Mass Transfer, 1975, vol. 18, no. 9, pp. 1055–1069. DOI: https://doi.org/10.1016/0017–9310(75)90223-9.
- Jischa M., Rieke H.B. About the prediction of turbulent Prandtl and Schmidt numbers from modeled transport equations. International Journal of Heat and Mass Transfer, 1979, vol. 22, no. 11, pp. 1547–1555. DOI: https://doi.org/10.1016/0017-9310(79)90134-0.
- Kays W.M. Turbulent Prandtl Number – Where Are We? Journal of Heat Transfer, 1994, vol. 116, no. 2, pp. 284–295. DOI: https://doi.org/10.1115/1.2911398.
- Weigand B., Ferguson J.R., Crawford M.E. An extended Kays and Crawford turbulent Prandtl number model. International Journal of Heat and Mass Transfer, 1997, vol. 40, no. 17, pp. 4191–4196. DOI: https://doi.org/10.1016/S0017-9310(97)00084-7.
- Cheng X., Tak N.I. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications. Nuclear Engineering and Design, 2006, vol. 236, no. 4, pp. 385–393. DOI: https://doi.org/10.1016/j.nucengdes.2005.09.006.
- Cheng X., Tak N.I. CFD analysis of thermal–hydraulic behavior of heavy liquid metals in sub-channels. Nuclear Engineering and Design, 2006, vol. 236, no. 18, pp. 1874–1885. DOI: https://doi.org/10.1016/j.nucengdes.2006.02.001.
- Рогожин С.А., Аксенов А.А., Жлуктов С.В., Осипов С.Л., Сазонова М.Л., Фадеев И.Д., Шепелев С.Ф., Шмелев В.В. Разработка модели турбулентного теплопереноса для жидкометаллического натриевого теплоносителя и её верификация. Вычислительная механика сплошных сред, 2014, т. 7, № 3, с. 306–316. DOI: https://doi.org/10.7242/1999-6691/2014.7.3.30.
- Nagano Y., Kim C. A Two-Equation Model for Heat Transport in Wall Turbulent Shear Flows. Journal of Heat Transfer, 1988, vol. 110, no. 3, pp. 583–589. DOI: https://doi.org/10.1115/1.3250532.
- Sommer T.P., So R.M.C., Lai Y.G. A near-wall two-equation model for turbulent heat fluxes. Journal of Heat and Mass Transfer, 1992, vol. 35, no. 12, pp. 3375–3387. DOI: https://doi.org/10.1016/0017-9310(92)90224-G.
- Зайцев Д.К., Смирнов Е.М. Метод расчета турбулентного числа Прандтля для SST-модели турбулентности. Научно-технические ведомости СПбГПУ. Физико-математические науки, 2019, т. 12, № 1, с. 39–49. DOI: https://doi.org/10.18721/JPM.12103.
- Sergeenko K. Adaptation of the turbulence model to the heat transfer in a rod bundle. Nuclear Engineering and Design, 2023, vol. 415, p. 112664. DOI: https://doi.org/10.1016/j.nucengdes.2023.112664.
- Daly B.J., Harlow F.H. Transport Equations in Turbulence. The Physics of Fluids, 1970, vol. 13, no. 11, pp. 2634–2649. DOI: https://doi.org/10.1063/1.1692845.
- Kenjereš S., Gunarjo S.B., Hanjalić K. Contribution to elliptic relaxation modelling of turbulent natural and mixed convection. International Journal of Heat and Fluid Flow, 2005, vol. 26, no. 4, pp. 569–586. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2005.03.007.
- Shams A., Santis A. De, Roelofs F. An overview of the AHFM-NRG formulations for the accurate prediction of turbulent flow and heat transfer in low-Prandtl number. Nuclear Engineering and Design, 2019, vol. 355, p. 110342. DOI: https://doi.org/10.1016/j.nucengdes.2019.110342.
- Shin J.K., An J.S., Choi Y.D. et al. Elliptic relaxation second moment closure for the turbulent heat fluxes. Journal of Turbulence, 2008, vol. 9. DOI: https://doi.org/10.1080/14685240701823101.
- Manceau R. Recent progress in the development of the Elliptic Blending Reynolds-stress model. International Journal of Heat and Fluid Flow, 2015, vol. 51, pp. 195–220. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2014.09.002.
- Grötzbach G. Numerical simulation of turbulent temperature fluctuations in liquid metals. International Journal of Heat and Mass Transfer, 1981, vol. 24, no. 3, pp. 475–490. DOI: https://doi.org/10.1016/0017-9310(81)90055-7.
- Grötzbach G. Revisiting the resolution requirements for turbulence simulations in nuclear heat transfer. Nuclear Engineering and Design, 2011, vol. 241, no. 11, pp. 4379–4390. DOI: https://doi.org/10.1016/j.nucengdes.2010.12.027.
- Roelofs F. Thermal hydraulics aspects of liquid metal cooled nuclear reactors. Woodhead Publishing, 2018. 438 p.
- Сорокин А.П., Кузина Ю.А., Денисова Н.А. Гидродинамика турбулентных потоков в ТВС быстрых реакторов (поле скорости и микроструктура турбулентности). Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы, 2021, № 2, с. 139–166.
- Grötzbach G. Anisotropy and Buoyancy in Nuclear Turbulent Heat Transfer: Critical Assessment and Needs for Modelling. Forschungszentrum Karlsruhe FZKA. 2007. 64 p. Доступно на: https://edocs.tib.eu/files/e01fn08/569326540.pdf (дата обращения 19.05.2025).
- Baglietto E., Ninokata H. A turbulence model study for simulating flow inside tight lattice rod bundles. Nuclear Engineering and Design, 2005, vol. 235, no. 7, pp. 773–784. DOI: https://doi.org/10.1016/j.nucengdes.2004.10.007.
- Chang D., Tavoularis S. Numerical simulation of turbulent flow in a 37-rod bundle. Nuclear Engineering and Design, 2007, vol. 237, no. 6, pp. 575–590. DOI: https://doi.org/10.1016/j.nucengdes.2006.08.001.
- Chandra L., Roelofs. F. CFD analyses of liquid metal flow in sub-channels for Gen IV reactors. Nuclear Engineering and Design, 2011, vol. 241, no. 11, pp. 4391–4403. DOI: https://doi.org/10.1016/j.nucengdes.2011.01.023.
- Speziale C.G., Sarkar S., Gatski T.B. Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. Journal of fluid mechanics, 1991, vol. 227, pp. 245–272. DOI: https://doi.org/0.1017/S0022112091000101.
- Lee Y., Ferng Y., Wang J.R., Shih C. Fuel Rod Surface Temperature Distributions in Liquid Metal Sub-channel Flows. Proc. of 19th International Conference on Nuclear Engineering. Chiba, Japa, 2011. Доступно на: https://www.academia.edu/download/75919941/_pdf.pdf (дата обращения 19.05.2025).
- Govindha Rasu N., Velusamy K., Sundararajan T., Chellapandi P. Investigations of flow and temperature field development in bare and wire-wrapped reactor fuel pin bundles cooled by sodium. Annals of Nuclear Energy, 2013, vol. 55, pp. 29–41. DOI: https://doi.org/10.1016/j.anucene.2012.12.007.
- Merzari E., Ninokata H., Bagileto E. Numerical simulation of flows in tight-lattice fuel bundles. Nuclear Engineering and Design, 2008, vol. 238, no. 7, pp. 1703–1719. DOI: https://doi.org/10.1016/j.nucengdes.2008.01.001.
- Yu Y.Q., Yan B.H., Cheng X., Gu, H.Y. Simulation of turbulent flow inside different subchannels in tight lattice bundle. Annals of Nuclear Energy, 2011, vol. 38, no. 11, pp. 2363–2373. DOI: https://doi.org/10.1016/j.anucene.2011.07.018.
- Yan B.H., Gu H.Y., Yu. L. Numerical simulation of the coherent structure and turbulent mixing in tight lattice. Progress in Nuclear Energy, 2012, vol. 54, no. 1, pp. 81–95. DOI: https://doi.org/10.1016/j.pnucene.2011.07.008.
- Shams A., Kwiatkowski T. Towards the Direct Numerical Simulation of a closely-spaced bare rod bundle. Annals of Nuclear Energy, 2018, vol. 121, pp. 146–161. DOI: https://doi.org/10.1016/j.anucene.2018.07.022.
- Mikuž B., Shams. A. Assessment of RANS models for flow in a loosely spaced bare rod bundle with heat transfer in low Prandtl number fluid. Annals of Nuclear Energy, 2019. vol. 124, pp. 441–459. DOI: https://doi.org/10.1016/j.anucene.2018.10.017.
- Hooper J.D., Rehme K. Large-scale structural effects in developed turbulent flow through closely-spaced rod arrays. Journal of Fluid Mechanics, 1984, vol. 145, pp. 305–337. DOI: https://doi.org/10.1017/S0022112084002949.
- Krauss T., Meyer L. Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle. Nuclear Engineering and Design, 1998, vol. 180, no. 3, pp. 185–206. DOI: https://doi.org/10.1016/S0029-5493(98)00158-7.
- Ikeno T., Kajishima T. Analysis of dynamical flow structure in a square arrayed rod bundle. Nuclear Engineering and Design, 2010, vol. 240, no. 2, pp. 305–312. DOI: https://doi.org/10.1016/j.nucengdes.2008.07.012.
- Tzanos C.P., Popov M., Mendonca F. Large Eddy Simulation of Turbulence in a Rod Cluster. Nuclear Technology, 2011, vol. 173, no. 3, pp. 239–250. DOI: https://doi.org/10.13182/NT11-A11659.
- Shams A., Mikuž B., Roelofs F. Numerical prediction of flow and heat transfer in a loosely spaced bare rod bundle. International Journal of Heat and Fluid Flow, 2018, vol. 73, pp. 42–62. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2018.07.006.
- Yu Y., Shemon E., Merzari E. LES simulation on heavy liquid metal flow in a bare rod bundle for assessment of turbulent Prandtl number. Nuclear Engineering and Design, 2023, vol. 404, p. 112175. DOI: https://doi.org/10.1016/j.nucengdes.2023.112175.
- Vonka V. Turbulent transports by secondary flow vortices in a rod bundle. Nuclear Engineering and Design, 1988, vol. 106, no. 2, pp. 209–220. DOI: https://doi.org/10.1016/0029-5493(88)90278-6.
- Choueiri G.H., Tavoularis S. Experimental investigation of flow development and gap vortex street in an eccentric annular channel. Part 2. Effects of inlet conditions, diameter ratio, eccentricity and Reynolds number. Journal of Fluid Mechanics, 2015, vol. 768, pp. 294–315. DOI: https://doi.org/10.1017/jfm.2015.90.
- Merzari E., Obabko A., Fischer P. et al. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives. Nuclear Engineering and Design, 2017, vol. 312, pp. 86–98. DOI: https://doi.org/10.1016/j.nucengdes.2016.09.028.
- Walker J., Merzari E., Obabko A. et al. Accurate prediction of the wall shear stress in rod bundles with the spectral element method at high Reynolds numbers. International Journal of Heat and Fluid Flow, 2014, vol. 50, pp. 287–299. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2014.08.012.
- Baglietto E., Ninokata H., Misawa T. CFD and DNS methodologies development for fuel bundle simulations. Nuclear Engineering and Design, 2006, vol. 236, no. 14, pp. 1503–1510. DOI: https://doi.org/10.1016/j.nucengdes.2006.03.045.
- Ninokata H., Merzari E., Khakim A. Analysis of low Reynolds number turbulent flow phenomena in nuclear fuel pin subassemblies of tight lattice configuration. Nuclear Engineering and Design, 2009, vol. 239, no. 5, pp. 855–866. DOI: https://doi.org/10.1016/j.nucengdes.2008.10.030.
- Чуданов В.В., Аксенова А.Е., Макаревич А.А., Первичко В.А. Применение кода CONV-3D для CFD-моделирования свинцово-висмутового теплоносителя. Атомная энергия, 2017, т. 123, № 2, с. 75–78.
- Shams A., Roelofs F., Baglietto E., Komen E.M.J. High fidelity numerical simulations of an infinite wire-wrapped fuel assembly. Nuclear Engineering and Design, 2018, vol. 335, pp. 441–459. DOI: https://doi.org/10.1016/j.nucengdes.2018.06.012.
- Angeli D., Frengi A., Stalio E. Direct numerical simulation of turbulent forced and mixed convection of LBE in a bundle of heated rods with P/D=1.4. Nuclear Engineering and Design, 2019, vol. 355, p. 110320. DOI: https://doi.org/10.1016/j.nucengdes.2019.110320.
- Mathur A., Kwiatkowski T., Potempski S., Komen E.M.J. Direct numerical simulation of flow and heat transport in a closely-spaced bare rod bundle. International Journal of Heat and Mass Transfer, 2023, vol. 211, p. 124226. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124226.
- Trande D., Grespan M., Stalio E., Angeli, D. Direct Numerical Simulation of liquid metal forced and mixed convection in a square rod bundle. Journal of Physics: Conference Series, 2024, vol. 2685, no. 1, p. 012012. DOI: https://doi.org/10.1088/1742-6596/2685/1/012012.
- Pacio J., Daubner M., Fellmoser F. et al. Heavy-liquid metal heat transfer experiment in a 19-rod bundle with grid spacers. Nuclear Engineering and Design, 2014, vol. 273, pp. 33–46. DOI: https://doi.org/
10.1016/j.nucengdes.2014.02.020. - Marinari R., Piazza I. Di, Tarantino M. et al. Experimental tests and post-test analysis of non-uniformly heated 19-pins fuel bundle cooled by Heavy Liquid Metal. Nuclear Engineering and Design, 2019, vol. 343, pp. 166–177. DOI: https://doi.org/10.1016/j.nucengdes.2018.12.024.
- Кириллов П.Л., Ушаков П.А. Теплообмен жидких металлов в пучках стержней. Теплоэнергетика, 2001, № 2, с. 40–45.
- Lumley J.L., Newman G.R. The return to isotropy of homogeneous turbulence. Journal of Fluid Mechanics, 1977, vol. 82, no. 1, pp. 161–178. DOI: https://doi.org/10.1017/S0022112077000585.
- Bieder U., Barthel V., Ducros F. et al. CFD calculations of wire wrapped fuel bundles: modeling and validation strategies. Proc. of Workshop Proceedings of Computational Fluid Dynamics for Nuclear Reactor Safety Applications (CFD4NRS-3). 2010, vol. 90. Доступно на: http://www.oecd-nea.org/nsd/csni/cfd/workshops/CFD4NRS-3/technical-papers/1/1.4%20_Advanced%20Reactors.pdf (дата обращения 19.05 2025).
- Ohshima H., Imai Y. Thermal hydraulic analysis of model pin bundle with liquid metal coolant-simulation results of standard problem. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 188–202. Доступно на: https://inis.iaea.org/records/s1ww9–44q67 (дата обращения 19.05.2025).
- Carlsson J., Wider H. Results of calculations of the standard problem hydrodynamics and heat transfer in a subassembly model cooled by liquid metal coolant. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 203–217. Доступно на: https://inis.iaea.org/records/s1ww9-44q67 (дата обращения 19.05.2025).
- Son H., Suh K. Result of calculations of the standard problem hydraulics and heat transfer in a subassembly model cooled by liquid metal coolant. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 218–237. Доступно на: https://inis.iaea.org/records/s1ww9-44q67 (дата обращения 19.05.2025).
- Peña A., Esteban G.A. Benchmark problem: hydraulics and heat transfer in the model pin bundles with liquid metal coolant. UPV-EHU calculations. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 238–250. Доступно на: https://inis.iaea.org/records/s1ww9-44q67 (дата обращения 19.05.2025).
- Zhukov A.V., Kuzina Yu.A., Sorokin A.P. et al. Specification of the benchmark problem of hydrodynamics and heat transfer in the model pin bundles with liquid metal coolant. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase. Proc. of the 11th Meeting of the International Association for Hydraulic Research (IAHR) Working Group. Obninsk, Russian Federation, 5–9 Jul 2004. Vienna: IAEA, 2005. Pp. 138–172.
- Жуков А.В., Кузина Ю.А., Сорокин А.П. Анализ бенчмарк-эксперимента по гидравлике и теплообмену в сборке имитаторов твэлов с жидкометаллическим охлаждением. Атомнаяэнергия, 2005, т. 99, № 5, с. 336–348.
- Manservisi S., Menghini F. CFD simulations in heavy liquid metal flows for square lattice bare rod bundle geometries with a four parameter heat transfer turbulence model. Nuclear Engineering and Design, 2015, vol. 295, pp. 251–260. DOI: https://doi.org/10.1016/j.nucengdes.2015.10.006.
- Li X., Su X., Gu L. et al. Numerical Study of Low Pr Flow in a Bare 19-Rod Bundle Based on an Advanced Turbulent Heat Transfer Model. Frontiers in Energy Research, 2022, vol. 10. DOI: https://doi.org/10.3389/fenrg.2022.922169.
- Wu J., Su X., Gong Z. et al. Exploration of high-efficiency heat transfer modes in lead-cooled assemblies: A structural optimization based on the SST k-ω-kθ-ɛθ model. Applied Thermal Engineering, 2024, vol. 247, p 23051. DOI: https://doi.org/10.1016/j.applthermaleng.2024.123051.
- Wu J., Su X., Gong Z. et al. Numerical heat transfer to LBE flow in a wire-wrapped 19-rod bundle using an OpenFOAM-based solver: four Parameter Foam. Nuclear Engineering and Design, 2024, vol. 418, p. 112917. DOI: https://doi.org/10.1016/j.nucengdes.2024.112917.
- Su X., Li X., Zhang L., Gu L. Thermal-hydraulic study on the VHELP rod bundle of China initiative accelerator driven system. Annals of Nuclear Energy, 2023, vol. 183, p. 109657. DOI: https://doi.org/10.1016/j.anucene.2022.109657.
- Su X.-K., Li X.W., Zhang L. et al. Thermal-hydraulic study in a wire-wrapped 19-rod bundle based on an isotropic four-equation model. Annals of Nuclear Energy, 2022, vol. 178, p. 109343. DOI: https://doi.org/10.1016/j.anucene.2022.109343.
- So R.M.C., Sommer T.P. A Near-Wall Eddy Conductivity Model for Fluids With Different Prandtl Numbers. Journal of Heat Transfer, 1994, vol. 116, no. 4, pp. 844–854. DOI: https://doi.org/10.1115/1.2911457.
- Otić I., Grötzbach G. Turbulent Heat Flux and Temperature Variance Dissipation Rate in Natural Convection in Lead-Bismuth, Nuclear Science and Engineering, 2007, vol. 155, no. 3, pp. 489496. DOI: https://doi.org/10.13182/NSE07-A2679.
- Barbi G., Giovacchini V., Manservisi S. A New Anisotropic Four-Parameter Turbulence Model for Low Prandtl Number Fluids. Fluids, 2021, vol. 7, no. 1, p. 6. DOI: https://doi.org/10.3390/fluids7010006.
- Захаров А.Г. Численное моделирование теплообмена в закрученных потоках жидких металлов применительно к ядерным энергоустановкам нового поколения. Дисс. канд. техн. наук. Москва: МЭИ, 2017. 204 с.
- Fischer P., Lottes J., Siegel A., Palmiotti G. Large eddy simulation of wire-wrapped fuel pins I: Hydrodynamics in a periodic array. Proc. of Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications. Monterey. CA, USA, 2007. Доступно на: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7affba31318168de497240051b1d5a91ae08d793 (дата обращения 19.05.2025).
- Merzari E., Pointer W.D., Smith J.G. et al. Numerical simulation of the flow in wire-wrapped pin bundles: Effect of pin-wire contact modeling. Nuclear Engineering and Design, 2012, vol. 253, pp. 374–386. DOI: https://doi.org/10.1016/j.nucengdes.2011.09.030.
- Pointer W.D., Fischer P., Smith J. et al. Simulations of turbulent diffusion in wire-wrapped sodium fast reactor fuel assemblies. Proc. of Challenges and opportunities (International conference on fast reactors and related fuel cycles). Kyoto, Japan, 2009, p. 22. Доступно на: https://inis.iaea.org/records/5c971-bpz17 (дата обращения 19.05.2025).
- Hu R., Fanning T.H. Intermediate-resolution method for thermal-hydraulics modeling of a wire-wrapped pin bundle. Proc. of American Nuclear Society (ANS) Winter Meeting and Nuclear Technology Expo. Las Vegas, USA, 2010.
- Hu R., Fanning T.H. Progress report on development of intermediate fidelity full assembly analysis methods Intermediate-resolution method for thermal-hydraulics modeling of a wire-wrapped pin bundle. Transactions of the American Nuclear Society, 2010, vol. 103, no. ANL/NE/CP-67223. DOI: https://doi.org/10.2172/1042573.
- Hu R.A., Fanning T.H. Momentum source model for wire-wrapped rod bundles-Concept, validation, and application. Nuclear Engineering and Design, 2013, vol. 262, pp. 371–389. DOI: https://doi.org/10.1016/j.nucengdes.2013.04.026.
- Roelofs F., Gopala V.R., Chandra L. et al. Simulating fuel assemblies with low resolution CFD approaches. Nuclear Engineering and Design, 2012, vol. 250, pp. 548–559. DOI: https://doi.org/10.1016/j.nucengdes.2012.05.029.
- Vlasov M.N., Merinov I.G. Application of an Integral Turbulence Model to Close the Model of an Anisotropic Porous Body as Applied to Rod Structures. Fluids, 2022, vol. 7, no. 2, p. 77. DOI: https://doi.org/10.3390/fluids7020077.
- Баясхаланов М.В., Меринов И.Г., Харитонов В.С., Корсун А.С. Моделирование трехмерных теплогидравлических процессов в активных зонах реакторов с жидкометаллическим теплоносителем в приближении анизотропного пористого тела. Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы, 2024, № 2, с. 243–258.
- Viellieber M., Dietrich P., Class A.G. Coarse‐Grid‐CFD for a Wire Wrapped Fuel Assembly. PAMM, 2013, vol. 13, no. 1, pp. 317–318. DOI: https://doi.org/10.1002/pamm.201310154.
- Yu. Y., Merzari E., Obabko A., Thomas J. A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly. Nuclear Engineering and Design, 2015, vol. 295, pp. 48–58. DOI: https://doi.org/10.1016/j.nucengdes.2015.09.020.
- Halim O., Galleni F., Forgione N. et al. A comparative analysis of detailed and reduced CFD approaches to model wire-wrapped fuel bundles for LMFBRs applications. Annals of Nuclear Energy, 2025, vol. 211, p. 110937. DOI: https://doi.org/10.1016/j.anucene.2024.110937.
- Корсун А.С., Меринов И.Г., Харитонов В.С., Баясхаланов М.В., Чуданов В.В., Аксенова А.Е., Первичко В.А. Расчетное моделирование теплогидравлических процессов в тепловыделяющих сборках с жидкометаллическим теплоносителем в приближении анизотропного пористого тела. Теплоэнергетика, 2019, № 4, с. 12–22. DOI: https://doi.org/10.1134/S0040363619040040.
- Li J., Fang D., Guo C. et al. Numerical Study on the Thermal Hydraulic Characteristics in a Wire-Wrapped Assembly of LFRs. Frontiers in Energy Research, 2020, vol. 8. DOI: https://doi.org/10.3389/fenrg.2020.548065.
- Wang X.A., Zhang D., Wang M. et al. Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor. Nuclear Engineering and Technology, 2020, vol. 52, no. 4, pp. 708–720. DOI: https://doi.org/10.1016/j.net.2019.09.009.
- Gajapathy R., Velusamy K., Selvaraj P. et al. A comparative CFD investigation of helical wire-wrapped 7, 19 and 37 fuel pin bundles and its extendibility to 217 pin bundle. Nuclear Engineering and Design, 2009, vol. 239, no. 11, pp. 2279–2292. DOI: https://doi.org/10.1016/j.nucengdes.2009.06.014.
- Rolfo S., Péniguel C., Guillaud M., Laurence D. Thermal-hydraulic study of a wire spacer fuel assembly. Nuclear Engineering and Design, 2012, vol. 243, pp. 251–262. DOI: https://doi.org/10.1016/j.nucengdes.2011.11.021.
- Волков В.Ю., Белова О.В., Крутиков А.А., Скибин А.П. Моделирование течения теплоносителя в пучке твэлов с проволочной навивкой. Теплоэнергетика, 2013, № 6, с. 50. DOI: https://doi.org/10.1134/S004036361306012X.
- Марков П.В., Cолонин В.И. Влияние способа дистанционирования на гидродинамику семистержневого пучка тепловыделяющих элементов. Вестник МГТУ им. Н.Э. Баумана. Серия «Машиностроение», 2013, № 1 (90), с. 38–48.
- Fricano J.W., Baglietto E. A quantitative CFD benchmark for Sodium Fast Reactor fuel assembly modeling. Annals of Nuclear Energy, 2014, vol. 64, pp. 32–42. DOI: https://doi.org/10.1016/j.anucene.2013.09.019.
- Pacio J., Litfin K., Batta A. et al. Heat transfer to liquid metals in a hexagonal rod bundle with grid spacers: Experimental and simulation results. Nuclear Engineering and Design, 2015, vol. 290, pp. 27–39. DOI: https://doi.org/10.1016/j.nucengdes.2014.11.001.
- Гетя С.И., Крапивцев В.Г., Марков П.В., Солонин В.И. Течение и массоперенос в малостержневых пучках оребренных твэлов применительно к реакторной установке БРЕСТ-ОД-300. Вестник МГТУ им. Н.Э. Баумана. Серия «Машиностроение», 2015, № 1 (100), с. 84–92.
- Лубина А.С., Субботин А.С., Седов А.А., Фролов А.А. Анализ особенностей гидродинамики и теплообмена в ТВС перспективного натриевого реактора с высоким коэффициентом воспроизводства в уран-плутониевом топливном цикле. Вопросы атомной науки и техники. Серия: Физика ядерных реакторов, 2015, № 1, с. 37–49.
- Фомичев Д.В., Солонин В.И. Структура турбулентного потока в пучках стержней тепловыделяющих сборок реакторной установки БРЕСТ-ОД-300. Вестник МГТУ им. Н.Э. Баумана. Серия «Машиностроение», 2015, № 3 (102), с. 4–16.
- Фомичев Д.В., Солонин В.И. Гидравлические характеристики пучков стержней тепловыделяющих сборок реакторной установки БРЕСТ-ОД-300. Вестник МГТУ им. Н.Э. Баумана. Серия «Машиностроение», 2015, № 2 (101), с. 4–17.
- Tiftikci A., Kocar C. Turbulent Flow Simulations of Wire-wrapped Fuel Pin Bundle of Sodium Cooled Fast Reactor in Lattice-Boltzmann Framework. Proc. of the International Conference Nuclear Energy for New Europe. Portorož, Slovenia, 2015, pp. 14–17. Доступно на: https://arhiv.djs.si/proc/nene2015/pdf/NENE2015_208.pdf (дата обращения 19.05.2025).
- Naveen Raj M., Valeamy K. Characterization of velocity and temperature fields in a 217 pin wire wrapped fuel bundle of sodium cooled fast reactor. Annals of Nuclear Energy, 2016, vol. 87, pp. 331–349. DOI: https://doi.org/10.1016/j.anucene.2015.09.008.
- Дунайцев А.А., Солонин В.И. Процессы массообмена в пучках оребренных стержней. Проблемы машиностроения и aвтоматизации, 2016, № 1, с. 115–124.
- Merzari E., Fischer P., Yuan H. et al. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly. Nuclear Engineering and Design, 2016, vol. 298, pp. 218–228. DOI: https://doi.org/10.1016/j.nucengdes.2015.11.002.
- Tiftikci A., Kocar C. Investigation of thermal turbulent flow characteristics of wire-wrapped fuel pin bundle of sodium cooled fast reactor in lattice-Boltzmann framework. Proc. of the International Conference Nuclear Energy for New Europe. Portorož, Slovenia, 2016, pp. 5–8. Доступно на: https://arhiv.djs.si/proc/nene2016/html/pdf/NENE2016_501.pdf (дата обращения 19.05.2025)
- Zhao P., Liu J., Ge Z. et al. CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle. Nuclear Engineering and Design, 2017, vol. 317, pp. 146–157. DOI: https://doi.org/10.1016/j.nucengdes.2017.03.038.
- Brockmeyer L., Carasik L.B., Merzari E., Hassan Y. Numerical simulations for determination of minimum representative bundle size in wire wrapped tube bundles. Nuclear Engineering and Design, 2017, vol. 322, pp. 577–590. DOI: https://doi.org/10.1016/j.nucengdes.2017.06.038.
- Wang X., Cheng X. Analysis of inter-channel sweeping flow in wire wrapped 19-rod bundle. Nuclear Engineering and Design, 2018, vol. 333, pp. 115–121. DOI: https://doi.org/10.1016/j.nucengdes.2018.04.008.
- Chai X., Liu X., Xiong J., Cheng X. CFD analysis of flow blockage phenomena in a LBE-cooled 19-pin wire-wrapped rod bundle. Nuclear Engineering and Design, 2019, vol. 344, pp. 107–121. DOI: https://doi.org/10.1016/j.nucengdes.2019.01.019.
- Dovizio D., Shams A., Roelofs F. Numerical prediction of flow and heat transfer in an infinite wire-wrapped fuel assembly. Nuclear Engineering and Design, 2019, vol. 349, pp. 193–205. DOI: https://doi.org/10.1016/j.nucengdes.2019.04.041.
- Dovizio D., Mikuž B., Shams A., Roelofs F. Validating RANS to predict the flow behavior in wire-wrapped fuel assemblies. Engineering and Design, 2020, vol. 356, p. 110376. DOI: https://doi.org/10.1016/j.nucengdes.2019.110376.
- Liu X.J., Yang D.M., Yang Y. et al. Computational fluid dynamics and subchannel analysis of lead-bismuth eutectic-cooled fuel assembly under various blockage conditions. Applied Thermal Engineering, 2020, vol. 164, p. 114419. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114419.
- Li Y., Huang M., Wang B., Meng X., & Cheng Y. Numerical study on the hydrothermal characteristics of a wire-wrapped rod bundle with nonuniform wire pitches. Progress in Nuclear Energy, 2025, vol. 178, p. 105529. DOI: https://doi.org/10.1016/j.pnucene.2024.105529.
- Dong X., Xue M., Lin J. et al. Study on the flow and heat transfer of LBE in wire-rod and rib-rod bundle channels. Annals of Nuclear Energy, 2025, vol. 213, p. 111105. DOI: https://doi.org/10.1016/j.anucene.2024.111105.
- Chen J., Zhang D., Wang X. et al. CFD Simulation of a 61-pin Wire-wrapped Fuel Subassembly for Sodium Cooled Fast Reactor. Proc. of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. Jeju, Korea, 2017. Доступно на: https://www.kns.org/files/int_paper/paper/MC2017_2017_7/P325S07-01ChenJ.pdf (дата обращения 19.05.2025).
- Kraus A.R., Merzari E. LES and RANS Modeling of an 84-Pin Hexagonal Rod Bundle with Spacer Grid and Experimental Validation. Nuclear Technology, 2024, pp. 1–23. DOI: https://doi.org/10.1080/00295450.2024.2409594.
- Merzari E., Bolotnov I., Dinh N. et al. Building a multiscale framework: An overview of the NEAMS thermal-hydraulics integrated research project. Nuclear Engineering and Design, 2025, vol. 433, p. 113807. DOI: https://doi.org/10.1016/j.nucengdes.2024.113807.
УДК 621.039.52.034.6+ 536.24+ 532.51
Вопросы атомной науки и техники. Cерия: Ядерно-реакторные константы, 2025, № 2, c. 271–308