Authors & Affiliations
Margolin B.Z.1, Sorokin A.A.1, Kashtanov A.D.1, Petrov S.N.1, Dub A.V.2, Pechenkin V.A.3
1 National Research Center “Kurchatov institute” – CRISM “Prometey”, Saint-Petersburg, Russia
2 Private Enterprise for Nuclear Industry Scientific Development “Science and Innovations”, Moscow, Russia
3 A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Margolin B.Z.1 – Deputy Head of Department – Head of Laboratory, Professor, Dr. Sci. (Tech.). Contacts: 49, Shpalernaya st., Saint-Petersburg, Russia, 191015. Tel: +7 (812) 710-25-38; e-mail:
Sorokin A.A.1 – Head of Workgroup, Cand. Sci. (Tech.).
Kashtanov A.D.1 – Advisor to the CEO, Dr. Sci. (Tech.).
Petrov S.N.1 – Head of Laboratory, Dr. Sci. (Tech.).
Dub A.V.2 – First Deputy CEO, Dr. Sci. (Tech.), Professor.
Pechenkin V.A.3 – Leading Researcher, Cand. Sci. (Pys.-Math.).
Abstract
The article considers the main advanced methods and proposes original investigation methods of material irradiated in ion accelerators. A methodology is proposed for assessment of the radiation resistance of materials, that includes the type and geometry of the specimens, assessment of their quality, methods of ion-irradiation of specimens modeling the neutron irradiation, methods of microstructure investigation and determination of the radiation resistance characteristics for various degradation mechanisms of materials.
Two methods are considered for determination of the radiation hardening: estimation on the basis of the results of micro-hardness measurement for material in initial and irradiated states and on the basis of the data of determination of density and sizes of microstructure elements. Conditions are found when the microstructure investigation should be performed by atom probe tomography in addition to the transmission electron microscopy methods to determine a contribution of precipitates and clusters to hardening.
The original methods are proposed for investigation of the radiation swelling, radiation creep, brittle fracture resistance for ferritic-martensitic steels and the high temperature radiation embrittlement of austenitic steels.
A method is proposed for determination of the radiation swelling dependence on damage dose on the basis of ion-irradiation and study of single specimen. Original method for study of radiation creep is proposed by means of irradiation of preliminary loaded specimens by heavy ions having track length much less than specimen thickness. This method allows one to use heavy ions with the energies less than 12 MeV. The methods are proposed for the resistance estimation to irradiation-assisted stress corrosion cracking (IASCC) in water environments imitating the coolant of the first contour of WWER type reactor and WWER with supercritical pressure.
The transferability functions are introduced that allow one to determine the ion irradiation condition for determination of one or another radiation resistance characteristic for a given condition of neutron irradiation.
Keywords
ion irradiation, radiation hardening, radiation swelling, radiation creep, irradiation-assisted stress corrosion cracking, microstructure, electronic microscopy, microhardness, autoclave tests
Article Text (PDF, in Russian)
- Was G.S., Jiao Z., Getto E., Sun K., Monterrosa A.M., Maloy S.A., Anderoglu O., Sencer B.H., Hackett M. Emulation of reactor irradiation damage using ion beams. Scripta Materialia, 2014, vol. 88, pp. 33–36. DOI: https://doi.org/10.1016/j.scriptamat.2014.06.003.
- Was G.S. Challenges to the use of ion irradiation for emulating reactor irradiation. Journal of Materials Research, 2015, vol. 30, no. 9, pp. 1158–1182. DOI: https://doi.org/10.1557/jmr.2015.73.
- Gupta J., Hure J., Tanguy B., Laffont L., Lafont M.-C., Andrieu E. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation. Journal of Nuclear Materials, 2016, vol. 476, pp. 82–92. DOI: https://doi.org/10.1016/j.jnucmat.2016.04.003.
- Gupta J., Hure J., Tanguy B., Laffont L., Lafont M.-C., Andrieu E. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel: Heavy ions vs protons. Journal of Nuclear Materials, 2018, vol. 501, pp. 45–58. DOI: https://doi.org/10.1016/j.jnucmat.2018.01.013.
- Rouxel B., Bisor C., De Carlan Y., Courcelle A., Legris A. Influence of the austenitic stainless steel microstructure on the void swelling under ion irradiation. EPJ Nuclear Sciences & Technologies, 2016, vol. 2, pp. 30. DOI: https://doi.org/10.1051/epjn/2016023.
- Borodin O.V., Bryk V.V., Kalchenko A.S., Parkhomenko A.A., Shilyaev B.A., Tolstolutskaya G.D., Voyevodin V.N. Microstructure evolution and degradation mechanisms of reactor internal steel irradiated with heavy ions. Journal of Nuclear Materials, 2009, vol. 385, pp. 325–328. DOI: https://doi.org/10.1016/j.jnucmat.2008.12.007.
- Grudzevich O.T., Pechenkin V.A., Kobetz U.A., Gurbich A.F., Bokhovko M.V., Shaginyan R.A., Margolin B.Z., Petrov S.N., Mikhailov M.S., Vasileva E.A. Issledovaniya radiatsionnoy stoykosti konstruktsionnykh materialov na uskoritelyakh ionov [Investigation of structural materials radiation resistance with ion accelerators]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of atomic science and technology. Series: Nuclear and Reactor Constants, 2022, no. 3, pp. 127–145. Available at: https://vant.ippe.ru/images/pdf/2022/issue2022-3-127-145.pdf (accessed 12.11.2025).
- Margolin B., Sorokin A., Belyaeva L. A Link between Neutron and Ion Irradiation Hardening for Stainless Austenitic and Ferritic–Martensitic Steels. Metals, 2024, vol. 14, p. 99. DOI: https://doi.org/10.3390/ met14010099. Available at: https://www.mdpi.com/2075-4701/14/1/99 (accessed 12.11.2025).
- Rogozhkin S.V., Aleev A.A., Zaluzhnyi A.G. et al. Effect of irradiation by heavy ions on the nanostructure of perspective materials for nuclear power plants. Physics of Metals and Metallography, 2012, vol. 113, pp. 200–211. DOI: https://doi.org/10.1134/S0031918X12020111.
- Zaluzhniy A.G., Sokurskiy Yu.N., Tebus V.N. Geliy v reaktornyh materialakh [Helium in reactor materials]. Мoscow, Energoatomizdat Publ., 1988, 224 p.
- Grudzevich O.T., Pechenkin V.A., Shaginyan R.A. Raschety proizvodstva vodoroda i geliya v konstruktsionnykh materialakh yadernykh reaktorov na bystrykh neytronakh [Hydrogen and helium production calculations in structural materials of fast nuclear reactors]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornyye konstanty – Problems of atomic science and technology. Series: Nuclear and Reactor Constants, 2022, issue 3, pp. 46–177. Available at: https://vant.ippe.ru/images/pdf/2022/issue2022-3-146-177.pdf (accessed 12.11.2025).
- Chen Y., Rao A.S., Alexandreanu B. et al. Slow strain rate tensile tests on irradiated austenitic stainless steels in simulated light water reactor environments. Nuclear Engineering and Design, 2014, no. 269, pp. 38–44. DOI: https://doi.org/10.1016/j.nucengdes.2013.08.003.
- Margolin B., Sorokin A., Pirogova N. Analysis of mechanisms inducing corrosion cracking of irradiated austenitic steels and development of a model for prediction of crack initiation. Engineering Failure Analysis, 2020, vol. 107, p. 104235. DOI: https://doi.org/10.1016/j.engfailanal.2019.104235.
- Glasgow B.B., Si-Ahmed A., Wolfer W.G., Garner F.A. Helium bubble formation and swelling in metals. Journal of Nuclear Materials, 1981, vol. 104, pp. 981–986. DOI: https://doi.org/10.1016/0022-3115(82)90727-9.
- Programma standartizatsii Goskorporatsii “Rosatom” [State Atomic Energy Corporation Rosatom Standardization program (according to Rosatom order of January 20, 2025, No. 1/66-П)]. Available at: https://rosatom.ru/upload/iblock/f53/f53ffffcd96e196760a71315906a997c.pdf (accessed 12.11.2025).
- Rajput N.S., Luo X. Chapter 5- FIB Micro-/Nano-fabrication. In Book: Micromanufacturing Engineering and Technology (Second Edition), Elsevier, 2015, pp. 61–80. DOI: https://doi.org/10.1016/B978-0-323-31149-6.00003-7.
- Erdman N., Bell D.C., Reichelt R. Chapter 5. Scanning Electron Microscopy. In Book: Springer Handbook of Microscopy. Edited by P.W. Hawkes and J.C.H. Spence. Springer, 2010. DOI: https://doi.org/10.1007/978-3-030-00069-1.
- Gigax Jonathan G., Aydogan Eda, Chen Tianyi et al. The influence of ion beam rastering on the swelling of self-ion irradiated pure iron at 450 C. Journal of Nuclear Materials, 2015, vol. 465, pp. 343–348. DOI: https://doi.org/10.1016/j.jnucmat.2015.05.025.
- Li Yongchang, Garner Frank A., Hu Zhihan, Shao Lin. Void swelling in pure iron after sequential self-ion-irradiation at different energies: Effect of injected interstitials and additional damage in regions containing pre-existing voids. Journal of Nuclear Materials, 2024, vol. 598, p. 155178. DOI: https://doi.org/10.1016/j.jnucmat.2024.155178.
- Kalchenko A.S., Bryk V.V., Lazarev N.P., Neklyudov I.M., Voyevodin V.N., Garner F.A. Prediction of swelling of 18Cr10NiTi austenitic steel over a wide range of displacement rates. Journal of Nuclear Materials, 2010, vol. 399, pp. 114–121. DOI: https://doi.org/10.1016/j.jnucmat.2010.01.010.
- Was G.S., Allen T.R. Radiation damage from different particle types. Radiation Effects in Solids. NATO Science Series II: Mathematics, physics and chemistry. Berlin: Springer, 2007, vol. 235, pp. 65–98.
- Voevodin V.N., Neklyudov I.M. Evolyutsiya strukturno-fazovogo sostoyaniya i radiatsionnaya stojkost konstrukcionnyh materialov [Evolution of the structural and phase conditions and radiation resistance of structural materials]. Kiev, Naukova Dumka Publ., 2006.
- Was Gary S. Fundamentals of Radiation Materials Science: Metals and Alloys. Springer Berlin, Heidelberg, 2007, 827 p.
- Mansur L.K. Void Swelling in Metals and Alloys Under Irradiation: An Assessment of the Theory. Nuclear Technology, 1978, vol. 40, pp. 5–34. DOI: https://doi.org/10.13182/NT78-2.
- Ziegler James F., Biersack Jochen P., Ziegler Matthias D. SRIM – The Stopping and Range of Ions in Matter. Available at: http://srim.com (accessed 12.11.2025).
- Patil D. Focused Ion Beam Machining as a Technology for Long Term Sustainability. In book: Smart Technologies for Improved Performance of Manufacturing Systems and Services. CRC Press, 2023. pp. 181–191. DOI: https://doi.org/10.1201/9781003346623-12/focused-ion-beam-machining-technology-long-term-sustainability-deepak-patil.
- Ping L., Siyu C., Houfu D., Zhengmei Y., Zhiquan C., Yasi W., Yiqin C., Wenqiang P., Wubin S., Huigao D. Recent advances in focused ion beam nanofabrication fornanostructures and devices: fundamentals and applications. Nanoscale, 2021, vol. 13, pp. 1529–1565.
- Felfer P., Ott B., Vorlaufer N. Specimen preparation for atom probe tomography. Practical Metallography, 2024, vol. 61(11), pp. 848–864. DOI: https://doi.org/10.1515/pm-2024-0075.
- Meng Y., Ju X., Yang X. The measurement of the dislocation density using TEM. Materials Characterization, 2021, vol. 175, pp. 8–17.
- Yao B., Edwards D.J., Kurtz R.J. TEM characterization of dislocation loops in irradiated bcc Fe-based steels. Journal of Nuclear Materials, 2013, vol. 434, no. 1–3, pp. 402–410. DOI: https://doi.org/10.1016/j.jnucmat.2012.12.002.
- Rybin V.V., Rubtsov A.S., Nesterova E.V. Metod odinochnyh refleksov (OR) i ego primenenie dlya elektronno-mikroskopicheskogo analiza dispersnyh faz [Single reflex method and its applicability for dispersed phases analysis with electronic microscopy]. Zavodskaya laboratoryia, 1982, no. 5, pp. 21–26.
- Andrews K.W., Dyson D.J., Keown S.R. Interpretation of Electron Diffraction Patterns. Springer, 1967, 188 p.
- Blavette D., Vurpillot F., Deconihout B., Menand A. Atom Probe Tomography: 3D Imaging at the Atomic Level. In book: Fabrication and Characterization in the Micro-Nano Range. 2011. DOI: https://10.1007/978-3-642-17782-8_9.
- Rogozhkin S.V., Klauz A.V., Ke Yu. et al. Study of precipitates in oxide dispersion-strengthened steels by SANS, TEM, and APT. Nanomaterials, 2024, vol. 14, no. 2, p. 194. DOI: https://doi.org/10.3390/nano14020194. Available at: https://www.mdpi.com/2079-4991/14/2/194 (accessed 12.11.2025).
- Philippe T., Gruber M., Vurpillot F., Blavette D. Clustering and Local Magnification Effects in Atom Probe Tomography: A Statistical Approach. Microscopy and Microanalysis, 2010, vol. 16(5), pp. 643–648. DOI: https://doi.org/10.1017/s1431927610000449.
- Philippe T., Duguay S., Blavette D. Clustering and Pair Correlation Function in Atom Probe Tomography. Ultramicroscopy, 2010, vol. 110(7), pp. 862–865. DOI: https://doi.org/10.1016/j.ultramic.2010.03.004.
- Costa G.Da., Wang H., Duguay S. et al. Advance in multi-hit detection and quantization in atom probe tomography. Review of Scientific Instruments, 2012, vol. 83(12), p. 123709. DOI: https://doi.org/10.1063/1.4770120.
- Orowan E. Fracture and strength of solids. Reports on Progress in Physics, 1949, vol. 12, pp. 185–232. DOI: https://doi.org/10.1088/0034-4885/12/1/309.
- Wiedersich H. Hardening mechanisms and the theory of deformation. The Journal of Minerals, Metals & Materials Society, 1964, vol. 16, pp. 425–430. DOI: https://doi.org/10.1007/BF03398123.
- Lucas G.E. The evolution of mechanical property change in irradiated austenitic stainless steels. Journal of Nuclear Materials, 1993, vol. 206, pp. 287–305. DOI: https://doi.org/10.1016/0022-3115(93)90129-M.
- Pengcheng Zhu, Yajie Zhao, Shrdha Agarwal, Zean Henry, Zinkl Steven J. Toward accurate evaluation of bulk hardness from nanoindentation testing at low indent depths. Materials and Design, 2022, vol. 213, 110317. DOI: https://doi.org/10.1016/j.matdes.2021.110317.
- Xiazi Xiao, Long Yu. Nano-indentation of ion-irradiated nuclear structural materials: A review. Nuclear Materials and Energy, 2022, vol. 22, 100721. DOI: https://doi.org/10.1016/j.nme.2019.100721.
- Linmao Qian, Ming Li, Zhongrong Zhou, Hui Yang, Xinyu Shi. Comparison of nano-indentation hardness to microhardness. Surface and Coating Technology, 2005, vol. 195, pp. 264–271. DOI: https:doi.org/10.1016/j.surfcoat.2004.07.108.
- Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal Material Research, 1992, vol. 7, pp. 1564–1583. DOI: https://doi.org/10.1557/JMR.1992.1564.
- Nix W.D., Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998, vol. 46, pp. 411–425. DOI: https://doi.org/10.1016/S0022-5096(97)00086-0.
- Margolin B., Belyaeva L., Sorokin A. The Issues of the Radiation Hardening Determination of Steels After Ion Irradiation Using Instrumented Indentation. Metals, 2025, vol. 15, p. 1181. DOI: https://doi.org/10.3390/met15111181. Available at: https://www.mdpi.com/2075-4701/15/11/1181 (accessed 12.11.2025).
- Vasina N.K., Margolin B.Z., Gulenko A.G., Kursevich I.P. Radiatsionnoe raspukhanie austenitnykh staley: vliyanie razlichnykh faktorov. Obrabotka eksperimental'nykh dannykh i formulirovka opredelyayushchikh uravneniy [Irradiation swelling of austenitic stainless steels. The Influence of various factors. Processing of experimental data and formulation of constitutive equation]. Voprosy Materialovedeniya –Materials Science, 2006, no. 4(48), pp. 69–89.
- Margolin B.Z., Murashova A.I., Neustroev V.S. Analysis of the influence of type of stress state on radiation swelling and radiation creep of austenitic steels. Strength of Materials, 2012, no. 44, pp. 227–240. DOI: https://doi.org/10.1007/s11223-012-9376-3.
- Cong Liu, Hailiang Ma, Ping Fan et al. Cavity swelling of 15-15Ti steel at high doses by ion irradiation. Materials, 2024, vol. 17, p. 925. DOI: https://doi.org/10.3390/ma17040925.
- Reiley T.C., Auble R.L., Shannon R.H. Irradiation creep under 60 MeV alpha irradiation. Journal of Nuclear Materials, 1980, vol. 90, pp. 271–281. DOI: https://doi.org/10.1016/0022-3115(80)90265-2.
- Henager C.H., Brimhall J.L., Simonen E.P. Creep in nickel bombarded with 17 MeV deuterons. Journal of Nuclear Materials, 1980, vol. 90, pp. 290–296. DOI: https://doi.org/10.1016/0022-3115(80)90267-6.
- Xu Cheng, Was Gary S. Proton irradiation creep of FM steel T91. Journal of Nuclear Materials, 2015, vol. 459, pp. 183–193. DOI: https://doi.org/10.1016/j.jnucmat.2015.01.023.
- Fitzpatrick M.E., Fry A.T., Holdway P., Kandil F.A., Shackleton J., Suominen L. Determination of Residual Stresses by X-ray Diffraction – Issue 2. Measurement Good Practice Guide No. 52. National Physical Laboratory Teddington, Middlesex, United Kingdom, 2005.
- Heald P.T., Speight M.V. Steady-state irradiation creep. Philosophical Magazine, 1974, vol. 29, pp. 1075–1080. DOI: https://doi.org/10.1080/14786437408226592.
- Gittus Y.H. Theory of dislocation-creep due to the Frenkel defects or interstices produced by the bombardment with energetic particles creep. Philosophical Magazine, 1972, vol. 25, pp. 345–354.
- Flinn J.E., Mc Vay G.L., Walters L.C. In-reactor deformation of solution annealed type 304L stainless steel. Journal of Nuclear Materials, 1977, vol. 65, pp. 210–223. DOI: https://doi.org/10.1016/0022-3115(77)90058-7.
- Margolin B., Fomenko V., Shvetsova V., Yurchenko E. On the link of the embrittlement mechanisms and microcrack nucleation and propagation properties for RPV steels. Part I. Materials, study strategy and deformation properties. Engineering Fracture Mechanics, 2022, vol. 267, p. 08400. DOI: https://doi.org/10.1016/j.engfracmech.2022.108400.
- Margolin B., Fomenko V., Shvetsova V., Yurchenko E. On the link of the embrittlement mechanisms and microcrack nucleation and propagation properties for RPV steels. Part II. Fracture properties and modelling. Engineering Fracture Mechanics, 2022, vol. 270, p. 108556. DOI: https://doi.org/10.1016/j.engfracmech.2022.108556.
- Margolin B.Z., Shvetsova V.A., Gulenko A.G. Radiation embrittlement modelling in multi-scale approach to brittle fracture of RPV steels. International Journal of Fracture, 2013, vol. 179, pp. 87–108. DOI: https://doi.org/10.1007/s10704-012-9775-2.
- Margolin B.Z., Fomenko V.N., Shishkov F.L., Yurchenko E.V. O vozmozhnosti opredeleniya soprotivleniya khrupkomu razrusheniyu ferritno-martensitnykh staley po rezul'tatam ispytaniy obraztsov posle ionnogo oblucheniya [On brittle fracture resistance determination of chromium stainless steel irradiated in ion accelerator]. Voprosy Materialovedeniya –Materials Science, 2023, no. 4(116), pp. 208–226.
- Busby J.T., Hash M.C., Was G.S. The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. Journal of Nuclear Materials, 2005, vol. 336, pp. 267–278. DOI: https://doi.org/10.1016/j.jnucmat.2004.09.024.
- Margolin B.Z., Belyaeva L.A., Sorokin A.A., Yurchenko E.V., Grigoriev M.N. Korrelyatsionnye zavisimosti mezhdu uprochneniem v terminakh predela tekuchesti i mikrotverdosti dlya austenitnykh i ferritno-martensitnykh staley [Correlation dependences between hardening in terms of yield strength and microhardness for austenitic and ferritic-martensitic steels]. Voprosy Materialovedeniya – Materials Science, 2024, no. 1(117), pp. 210–224.
- Margolin B.Z., Yurchenko E.V., Morozov A.M., Pirogova N.E., Brumovsky M. Analysis of a link of embrittlement mechanisms and neutron flux effect as applied to reactor pressure vessel materials of WWER. Journal of Nuclear Materials, 2013, vol. 434, pp. 347–356. DOI: https://doi.org/10.1016/j.jnucmat.2012.11.014.
- Margolin B.Z., Yurchenko E.V., Kostylev V.I., Morozov A.M., Varovin A.Ya., Rogozhkin S.V., Nikitin A.A. Radiation embrittlement of support structure materials for WWER RPVs. Journal of Nuclear Materials, 2018, vol. 508, pp. 123–138. DOI: https://doi.org/10.1016/j.jnucmat.2018.05.023.
- Margolin B., Yurchenko E. Trend Curves for WWER RPV Materials and Their Supported Structures.
In: Radiation Embrittlement Trend Curves and Equations and Their Use for RPV Integrity Evaluations, William L. Server, Milan Brumovský, Mark Kirk, 2023, STP1647-EB. - Barnes R.S. Embrittlement of stainless steels nickel based alloys at high temperature induced by neutron radiation. Nature, 1965, vol. 206, pp. 1307–1310.
- Ward A.L., Holmes J.J. Ductility Loss in Fast Reactor irradiated stainless steel. Nuclear Applications & Technology, 1970, vol. 9, pp. 771–772. DOI: https://doi.org/10.13182/NT70-A28755.
- Claudson T.T., Barker R.W., Fish R.L. The effects of fast flux irradiation on the mechanical properties and dimensional stability of stainless steel, Nuclear application and technology, 1970, vol. 9, pp. 10–23. DOI: https://doi.org/10.13182/NT70-A28723.
- Zelenskiy V.F., Kiryhin N.M., Neklyudov I.M. et al. Vysokotemperaturnoe radiatsionnoe ohrupchivanie materialov. Analiticheskiy obzor [High-temperature radiation embrittlement of materials. Analytic review]. Kharkov, HFTI Publ., 1983.
- Shvetsova V.A., Prokoshev O.Yu., Margolin B.Z., Sorokin A.A., Potapova V.A. Synergistic Mechanism of Radiation Embrittlement of Austenitic Stainless Steels under Long-Term High-Temperature Irradiation. Inorganic Materials: Applied Research, 2018, Res. 9, pp. 1188–1197. DOI: https://doi.org/10.1134/S2075113318060230.
- Margolin B.Z., Sorokin A.A., Buchatsky A.A. et al. Kharakteristiki i mekhanizmy razrusheniya obluchennykh austenitnykh staley v oblasti povyshennykh temperatur i formulirovka kriteriya razrusheniya. Chast' 1. Eksperimental'nye issledovaniya [Fracture properties and mechanisms for irradiated austenitic steels over high temperature range and formulation of fracture criterion. Part 1. Experimental results]. Voprosy Materialovedeniya – Materials Science, 2022, no. 2(110), pp.185–202.
- Huang F.H. The fracture characterization of highly irradiated Type 316 stainless steel. International Journal of Fracture, 1984, vol. 25, pp. 181–193.
- Griffiths M. Ni-based alloys for reactor internals and steam generator application. In book: Structural Alloys for Nuclear Energy Applications, Elsevier, 2019, pp. 349–409.
- Konobeev Yu.V., Birzhevoi G.A. Prospects for Using High-Nickel Alloys in Power Reactors with Supercritical-Pressure Water. Atomic Energy, 2004, vol. 96, issue 5, pp. 365–373. DOI: https://doi.org/10.1023/B:ATEN.0000038104.58523.cd.
- Margolin B.Z., Shvetsova V.A., Karzov G.P. Brittle fracture of nuclear pressure vessel steels. Part I. Local criterion for cleavage fracture. International Journal of Pressure Vessels and Piping, 1997, vol. 72, pp. 73–87.
- Margolin B.Z., Fomenko V.N., Gulenko A.G. et al. Further improvement of the Prometey model and Unified Curve method part 1. Improvement of the Prometey model. Engineering Fracture Mechanics, 2017, vol. 182, pp. 467–486. DOI: https://doi.org/10.1016/j.engfracmech.2017.05.015.
- Was G.S., Ampornrat P., Gupta G. et al. Corrosion and stress corrosion cracking in supercritical water. Journal of Nuclear Materials, 2007, vol. 371, pp. 176–201. DOI: https://doi.org/10.1016/j.jnucmat.2007.05.017.
- Teysseyre S. Corrosion issues in supercritical water reactor (SCWR) systems. In book: Nuclear Corrosion Science and Engineering. Woodhead Publishing, 2012. DOI: https://doi.org/10.1533/9780857095343.6.866.
- Muthukumar N., Lee J.H., Kimura A. SCC behavior of austenitic and martensitic steels in supercritical pressurized water. Journal of Nuclear Materials, 2011, vol. 417, pp. 1221–1224. DOI: https://doi.org/10.1016/j.jnucmat.2011.02.033.
- Margolin B., Pirogova N., Sorokin A., Kokhonov V., Dub A., Safonov I. Investigation of Stress Corrosion Cracking Resistance of Irradiated 12Cr Ferritic–Martensitic Stainless Steel in Supercritical Water Environment. Materials, 2023, vol. 16, issue 7, p. 2585. DOI: https://doi.org/10.3390/ma16072585. Available at: https://www.mdpi.com/1996-1944/16/7/2585 (accessed 12.11.2025).
- Garner F.A. Radiation Damage in Austenitic Steels. In book: Comprehensive Nuclear Materials, Amsterdam, Elsevier, 2012, vol. 4, pp. 33–95.
- Kursevich I.P., Margolin B.Z., Prokoshev O.Yu., Kohonov V.I. Mekhanicheskie svoystva austenitnykh staley pri neytronnom obluchenii: vliyanie razlichnykh faktorov [Mechanical properties of the austenitic steels after neutron irradiation: effect of various factors]. Voprosy Materialovedeniya – Materials Science, 2006, no. 4(48), pp. 55–68.
- Sorokin A.A., Margolin B.Z., Kursevich I.P. et al. Effect of neutron irradiation on tensile properties of materials for pressure vessel internals of WWER type reactors. Journal of Nuclear Materials, 2017, vol. 444, pp. 373–384. DOI: https://doi.org/10.1016/j.jnucmat.2013.10.016.
- Lapin A.S., Blandinsky V.Y., Nevinitsa V.A., Pustovalov S.B., Sedov A.A., Subbotin S.A., Fomichenko P.A. Neytronno-fizicheskie osobennosti reaktora MTIR-SKD kak eksperimental'noy bazy dlya otrabotki perspektivnykh legkovodnykh reaktornykh tekhnologiy [Neutronic Peculiarities of the MTIR-SKD Reactor as an Experimental Base for Testing Advanced Light-Water Reactor Technologies]. Izvestiya vuzov. Yadernaya energetika, 2024, no. 3, pp. 18–31.
UDC 621.039
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 4, 4:13

