Abramov B.D.
Institute for Physics and Power Engineering, Obninsk, Russia
Some reactor kinetics mathematical
modelling problems are considered in the framework of the standard 6-
group delayed neutron constants (Keepin, ABBN, JENDL, ENDF/B6) with
energy and isotope dependent precursor half-lives, and the new 8-group
delayed neutron data (Spriggs, Campbell, Piksaikin) with "universal"
precursor decay constant (or half-life) groups identical for all isotopes and
energies.
1. Usachev, L.N., Equation for neutron importance, reactor kinetics and perturbation
theory, Reactor Construction and Theory of Reactors, USSR Academy of Sciences,
Moscow, 1955.
2. Henry, A.F., The Application of Reactor Kinetics to the Analysis of Experiments, Nucl.
Sci. and Eng., v.3, No. 1, p. 52-70 (1958).
3. Keepin, G.R., Physics of nuclear reactor kinetics, Atomizdat, Moscow, 1967.
4. Shikhov, S.B., Mathematical theory of reactors, Atomizdat, Moscow, 1973.
5. Bell, D., Glasstone S., Nuclear reactor theory, Atomizdat, Moscow, 1974.
6. Hedrick, D., Nuclear reactor dynamics, Atomizdat, Moscow, 1975.
7. Abagyan, L.P., Bazazyants, N.O., Nikolaev, M.N., Tsibulya, A.M., Group constants for
reactor and shielding calculations, Ehnergoatomizdat, Moscow, 1981.
8. Kazanskij, Yu.A., Matusevich, E.S., Experimental methods for reactor physics,
Energoatomizdat, Moscow, 1984.
9. Shokodko, A.G., Zhuravlev, V.I., Sluchevskaya, V.M., Representation of several fissile
isotopes by one effective isotope when determining reactivity by the inverse kinetic
method, Voprosy atomnoj nauki i tekhniki, Ser. Fiz. i tekh. yad. reaktorov, No. 9 (6),
p. 69-71 (1984).
10. Gulevich, A.V., Kukharchuk, O.F., Polevoj, V.B., Pupko, S.V., Application of an
integral neutron kinetics model to the calculation of multiregion multiplying systems,
Preprint IPPE-2129, Obninsk, 1990.
11. Bezborodov, A.A., Volkov, A.V., Ganina, S.M., Ginkin, V.P., Kuznetsov, I.A.,
Troyanova, N.M., Shvetsov, Yu.E., Programme for a joint solution to spatial-time
neutron transport equations and thermohydraulic transient and emergency processes in
fast reactors, Preprint IPPE-2637, Obninsk, 1997.
12. Maksyutenko, B.P., Relative delayed neutron yields for fast neutron induced fission of
238U, 235U and 232Th, Zhurnal Ehksperimentalnoj i Teoreticheskoj Fisiki, v. 35, p. 815
(1958).
13. Tarasko, M.Z., Maksyutenko, B.P., A new approach to the search for the distribution of
delayed neutron precursors, Yadernaya Fizika, v. 17, No. 6, p. 1149-1155 (1973).
14. Meneley, D.A., The Effective Delayed Neutron Fraction in Fast Reactors, ANL-7410,
198 (1970).
15. Cahalan, J.E., Ott, K.O., Delayed Neutron Data for Fast Reactor Analysis, Nucl. Sci.
Eng., 70, 184, (1973).
16. Tuttle, R.J., Delayed Neutron Data for Reactor Physics Analysis, Nucl. Sci. Eng., 56,
p. 37-71 (1975).
17. JENDL-3.2, JAERI-DATA/CODE97-044.
18. Brady, M.C., England, T.R., Delayed Neutron Data and Group Parameters for 43
Fissioning Systems, Nucl. Sci. Eng., 103, p.129-149 (1989).
19. Manturov, G.N., Nikolaev, M.N., Tsibulya, A.M., ABBN-93 Group constants system,
Voprosy atomnoj nauki i tekhniki, Ser. Yadernye konstanty, No. 1, p. 59-98 (1996).
20. Zabrodskaya, S.V., Nikolaev, M.N., Tsibulya, A.M., Data on delayed neutrons in the
ABBN-93 constants system, Voprosy atomnoj nauki i tekhniki, Ser. Yadernye
konstanty, No. 1, p. 21 (1998).
21. Spriggs, G.D., In-Pile Measurement of the Decay Constants and Relative Abundances
of Delayed Neutrons, Nucl. Sci. Eng., 114, 342 (1993).
22. Spriggs, G.D., Campbell, I.M., Piksaikin, V.M., An 8-Group Neutron Model Based on a
Consistent Set of Half-Lives, Report LA-UR-98-1619, LANL, Distributed to the
OECD/NEA-s Working Party in Delayed Neutrons (WPEC/SG6), 1999.
23. Piksaikin, V.M., Kazakov, L.E., Isaev, S.G., Korolev, G.G., Roshchenko, V.A.,
Tertychnyj, R.G., 8-group relative delayed neutron yields for monoenergetic neutron
induced fission of 239Pu, Voprosy atomnoj nauki i tekhniki, Ser. Yadernye konstanty,
No. 1, p. 66-67 (2001).
24. Piksaikin, V.M., Kazakov, L.E., Isaev, S.G., Korolev, G.G., Roshchenko, V.A.,
Tertychnyj, R.G., 8-group relative delayed neutron yields for epithermal neutron
induced fission of 238U and 239Pu, ibid, p. 67-72 (2001).
25. Doroshenko, A.Yu., Piksaikin V.M., Tarasko M.Z., The Energy Spectrum of Delayed
Neutrons from Thermal Neutron Induced Fission on 235U and Its Analytical
Approximation, Voprosy atomnoj nauki i tekhniki, Ser. Yadernye konstanty, No. 1,
p. 87-93 (2001).
26. Borzakov, S.B., Zamyatin, Yu.S., Panteleev, Ts., et al., Study of delayed neutron decay
curves during thermal neutron fission, Voprosy atomnoj nauki i tekhniki, Ser. Yadernye
konstanty, No. 2, p. 5-11 (1999).
27. Updated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR
Reactivity Effects, Working Material, First Research Co-ordination Meeting, Vienna,
24-26 November 1999, p.11.
28. Abramov, B.D., Some questions on mathematical modelling of reactor kinetics, Preprint
IPPE-2778, Obninsk, 1999.
29. Abramov, B.D., Danilychev, A.V., Stogov, V.Yu., Suslov, I.P., Questions on modelling
the kinetics of heterogeneous regions with various types of fuel using point
approximation, Preprint IPPE-2855, Obninsk, 2000.
30. Abramov, B.D., Some generalizations of reactor kinetics equations, Preprint IPPE-2875,
Obninsk, 2001.
31. Abramov, B.D., Some modifications to the theory of coupled reactors, Atomnaya
energiya, Vol. 90, No. 5, p. 337-345 (2001).
32. Abramov, B.D., Some modifications to point kinetics equations, Yadernaya energetika,
No. 2, p. 52-59 (2001).
33. Abramov, B.D., Some generalizations of reactor inverse kinetics equations, Preprint
IPPE-2970, Obninsk, 2003.