Suhovoy A.M., Hitrov V.A.
Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia 
 
Both the  accomplished to date model-free extraction of level 
  density and  radiative strength functions of cascade gamma dipole transitions and subsequent 
  model  approximation of their parameters have shown the need to develop a new model of 
  compound-state  of any masses and types decay. The required model should explicitly take into 
  account the  dynamics of the coexistence and interaction of Fermi and Bose forms of nuclear 
  matter. Such a  model will almost define thresholds for nucleon pairs breaking gap below the 
  neutron binding  energy, the ratio of level density of quasiparticle/phonon type, and the  peculiarities 
  of radiative  strength functions of gamma transitions in heated nuclei. In general, the 
  state-of-the-art  technology of modern experiment has opened an opportunity for much more  realistic 
  descriptions of  nucleus properties below the giant resonance energy than ones from the 
statistical  theory of the nucleus. 
1. Bohr A.,  Mottelson B.R. Nuclear Structure, Vol. 1. N. Y., Amsterdam: Benjamin W.A.,  1969.
2. Zhuravlev  B.V. Bull. Rus. Acad. Sci. Phys. 1999. V. 63. P. 123.
3. Bartholomew  G.A. et al. Adv. Nucl. Phys. 1973. V. 7. P. 229.
4. Schiller A.  et al. Nucl. Instr. Meth. A 2000. V. 447. P. 498.
5. Khitrov V.A.,  Sukhovoj A.M., Pham Dinh Khang, Vuong Huu Tan, Nguyen Xuan Hai. Proc. of the  XI Intern. Seminar on Interaction of Neutrons with Nuclei, Dubna, May 2003.  Dubna, 2004. P.107.
6. Sukhovoj  A.M., Khitrov V.A. Proc. of the XVII International Seminar on Interaction of  Neutrons with Nuclei, Dubna, May 2009. E3-2009-36. Dubna, 2010, P.268;  nucl-ex/1009.4761.
7. Vasilieva  E.V., Sukhovoj A.M., Khitrov V.A. Phys. At. Nucl., 2001. V.64., P.153;  nucl-ex/0110017.
8. Sukhovoj  A.M., Khitrov V.A. Phys. At. Nucl. 2010. V. 73. P.1635.
9. Khitrov V.A.,  Li Chol, Sukhovoj A.M. Proc. of the XI International Seminar on Interactions  of 
  Neutrons with  Nuclei, Dubna, May 2003. Dubna, 2004. P. 98; nucl-ex/0404028.
10. Sukhovoj  A.M., Khitrov V.A. Phys. Part. Nucl. 2005. V.36. P.359.
11. Boneva S.T.,  Sukhovoj A.M., Khitrov V.A. Nucl. Phys. A 1995. V. 589. P. 293.
12. Sukhovoj  A.M., Khitrov V.A. Phys. At. Nucl. 2009. V. 72. P. 1426.
13. Axel P. Phys. Rev. 1962. V. 126. P. 671.
14. Brink D.M.,  Ph.D.Thesis. Oxford University, 1955.
15. Sukhovoj  A.M., Khitrov V.A. Phys. Part. Nucl. 2006. V. 37. P. 899.
16. Sukhovoj  A.M., Furman W.I., Khitrov V.A. Phys. At. Nucl. 2008. V. 71. P. 982.
17. Malov L.A.,  Solov'ev V.G. Yad. Phys. 1977. V. 26. P. 729.
18. Sukhovoj  A.M., Jovancevic N., Furman W.I., Khitrov V.A. JINR communication  E3-2012-100, Dubna, 2012. 
19. Ignatyuk  A.V. Report INDC-233(L). IAEA, Vienna, 1985.
20. Reference  Input Parameter Library 20-2. Handbook for calculations of nuclear reaction  data. (IAEATECDOC, 2002).
21. Strutsky  V.M. Proc. of the International Congress on Nuclear Physics, Paris, 1958.  P.617.
22. Pronyaev  V.G., Kotelnikova G.V., Lovchikova G.N., Salnikov O.A. Sov. J. Nuc. Phys.  1979. V. 30. P. 310.
23. Sukhovoj  A.M., Khitrov V.A. JINR Preprint E3-2005-196. Dubna, 2005.
24. Voinov A. et  al. Phys.Rev. C 2010. V. 81. P. 024319.
25. Dilg W.,  Schantl W., Vonach H., Uhl M. Nucl. Phys. A 1973. V.217. P.269.
26. Soloviev  V.G. Sov. J. Phys. Part. Nuc. 1972. V. 3. P. 390.
27. Kadmenskij  S.G., Markushev V.P., Furman W.I. Sov. J. Nucl. Phys. 1983. V. 37. P. 165.
28. Sukhovoj  A.M., Furman W.I., Khitrov V.A. Phys. At. Nucl. 2010. V.73. P.1507.
29. Sukhovoj  A.M., Khitrov V.A. Phys. At. Nucl. 2013. V. 76. P. 70.
30. Bondarenko  V.A., Honzatko J., Khitrov V.A., Sukhovoj A.M., Tomandl I. Fizika B  (Zagreb). 2003. V.12. P.299.
31.  http://www.nndc.bnl.gov/nndc/ensdf; http://www-nds.iaea.org.
32. Sukhovoj  A.M., Khitrov V.A. Proc. of the XVIII International Seminar on Interaction  of Neutrons with Nuclei, Dubna, May 2010. E3-2011-26, Dubna, 2011. P. 208.
33. Boneva S.T.  et al. Sov. J. Nuc. Phys. 1991. V. 22. P. 232.