Korsun A.S., Kruglov V.B., Merinov I.G., Fedoseyev V.N., Kharitonov V.S.
National Research Nuclear University MEPhI, Moscow, Russia
A review of heat and mass transfer in porous structure such as fuel bundle is presented. Problems of averaging equations of heat, mass transfer and turbulence model are considered. An analysis of the research results is described further.
In order to establish communication type of average heat and momentum fluxes with average temperature and velocity of the fluid, one could use the theory of matrix polynomials. A vector characterizing the direction of flow and a degree of orientation of a porous media are used as the communication argument.
The resistances tensor which linking the resisting force with the velocity vector can depend on the attack angle.
A form of the tensor of effective thermal conductivity of the coolant flow through a fuel assembly was obtained. The tensor contains four parameters, which represent the effective thermal conductivity coefficients under certain combinations of the flow velocity vector and temperature gradient with respect to the axis of a fuel assembly.
A correlation between the tensor of effective stresses and the field of average velocities was established. The correlation contains three effective viscosity coefficients.
To close the averaged equations the authors suggest using an integral turbulence model because by means of this model one could obtain the effective coefficients of momentum and heat transfer.
Particular attention is given to the discussion of further research activity.
1. Whitaker S. Diffusion and dispersion in porous media. AIChE Journal. 1967, no. 13, pp.420-427.
2. Lee K., Howell J.R. Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field. "Proceedings of the 2nd ASME/JSME Thermal Engineering Joint Conference". V.2, pp.377-386.
3. Wang H., Takle E.S. Boundary-layer flow end turbulence near porous obstacles. Boundary-Layer Meteorol. No. 74, pp.73-78.
4. Travkin V.S. Discussion: «Alternative models of turbulence in a porous medium, and related matters». ASME J. Fluids Eng. 2001, v.123, pp.931.
5. Lage J.L., de Lemos M.J.S., Nield D.A. Modeling turbulence in porous media. Transport phenomena in porous media II, edited by Derek B. Ingham end Ioan Pop. Pergamon. 2002, pp.198-230.
6. Marcelo J.S. de Lemos. Turbulence in porous media modeling and applications. Elsevier Ltd. 2006.
7. Korsun A.S. Jeffektivnaja teploprovodnost' poristyh struktur, sostavlennyh iz puchkov sterzhnej ili trub. Teplomassoobmen MMF_4 Trudy IV Minskogo mezhdunarodnogo foruma. Minsk. 2000, v.10, pp.242-250.
8. Korsun A.S., Maslov Ju.A, Merinov I.G., Haritonov V.S. Jeffektivnaja teploprovodnost' teplonositelja, omyvajushhego sterzhnevuju sborku. Trudy RNKT-4. V.7 Izd. M: MJeI, 2006, pp.235-238.
9. Korsun A.S., Ponomarev V.A. Tenzor jeffektivnyh naprjazhenij v potoke, obtekajushhem struktury tipa puchkov sterzhnej ili trub. Teplogidravlicheskie aspekty bezopasnosti aktivnyh zon, ohlazhdaemyh vodoj i zhidkimi metallami. Teplofizika 2008. Obninsk: IPPE, 15-17oktjabrja 2008, pp.138-139.
10. Smith G.F. On isotropic function of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Engng. Sci. Pergamon Press, 1971, v.9, pp.899-916.
11. Korsun A.S., Vikulova S.V. K opredeleniju soprotivlenija anizotropnogo poristogo tela. Trudy Vtoroj Rossijskoj nacional'noj konferencii po teploobmenu. V 8 tomah. V.5 Dvuhfaznye techenija. Dispersnye potoki i poristye sredy. M.: Izdatel'stvo MJeI, 1998, pp.215-218.
12. Korsun A.S., Kruglov A.B., Kruglov V.B., Odincov A.A., Haritonov V.S. Jeksperimental'noe issledovanie soprotivlenija pri uglovom obtekanii puchkov sterzhnej. Teplogidravlicheskie aspekty bezopasnosti aktivnyh zon, ohlazhdaemyh vodoj i zhidkimi metallami. Teplofizika 2008. Obninsk: IPPE, 15-17 oktjabrja 2008, pp.51-52.