Goremykin S.A.
National Research Center “Kurchatov Institute”, Moscow, Russia
Full-scale simulation of reactor dynamics with the coupled neutronic and thermo-hydraulic codes requires great computational efforts, most part of which usually refers to neutronic modeling. The given work is dedicated to super-computer parallelization of dynamic software package (SP) BARS. SP BARS makes it possible to calculate steady-state reactor conditions at any allowable power level, to simulate the reactor core cycle, the xenon transient and fast nominal and emergency transients with prompt and delayed neutrons. To speed up the computational process, parallel calculations are currently used. In this context we can distinguish two directions. One is good for “coarse-grained” tasks, in which a small number of parallel subtasks can be singled out, but each one is rather labor-consuming in terms of calculations. This is a trend of super-computers that combine a great number of full-scale processors within the framework of both a computer and a cluster). The second trend is suited for “fine-grained” tasks where a lot of small parallel subtasks can be distinguished. This is a trend for video cards (Nvidia CUDA) and pipelined coprocessors (Intel Xeon Phi). This paper considers the first approach. Different technologies are used for its implementation. In this case the OpenMP and MPI technologies will be considered.
1. Avvakumov A.V., Malofeev V.M. Trekhmernoe modelirovanie perekhodnykh processov na zapazdyvayushhikh nejtronakh v geterogennom reaktore [3D Modeling of Transients with Delayed Neutron in a Heterogeneous Reactor]. Atomnaya energiya - Atomic Energy. 1991, Vol. 70, no. 1, pp. 8-12.
2. Malofeev V.M. Metod trekhmernogo rascheta geterogennogo reaktora v dipol'nom priblizhenii [The Method of 3D Heterogeneous Reactor Calculation in Dipole Approximation]. Moscow, TSNIIATOMINFORM Publ., 1987, no.73, 31 p.
3. Avvakumov A.V., Malofeev V.M. Trekhmernoe modelirovanie kinetiki geterogennogo reaktora v adiabaticheskom i kvazistaticheskom priblizheniyakh [3D Modeling of Heterogeneous Reactor Kinetics in Adiabatic and Quasistatic Approximations]. Preprint ITEF 31- Preprint ITEF 31. 1990, pp. 97-90.
4. Chapman B., Jost G., van der Pas R. Using OpenMP: portable shared memory parallel programming. London: The MIT Press, 2008.
5. OpenMP Application Program Interface. Version 3.0. 2008. 12.08.2014. Available at: http://openmp.org/mp-documents/spec30.pdf.
6. IBM Platform MPI User’s Guide. Version 8.1. 2012. 12.08.2014. Available at: http://www2.nchc.org.tw/ a00yys00/alps/pcmpi.08.01.00.ug.pdf.
7. Speedup. Available at: https://en.wikipedia.org/wiki/Speedup.
8. Nemnjugin S. Modeli i sredstva programmirovaniya dlya mnogoprocessornykh vychislitel'nykh sistem [Programming Models and Tools for Multiprocessor Computers]. Available at: http://www.intuit.ru/studies/courses/584/440/lecture/9850?page=2.
9. Grehem R., Knut D., Patashnik O. Konkretnaya matematika. Osnovanie informatiki [Concrete Mathematics. Foundation for Computer Science]. Moscow, MIR Publ., 1998. pp. 106-108.
10. Svetozarov V.V. Osnovy statisticheskoj obrabotki rezul'tatov izmerenij [Basics for Statistic Processing of Measurement Results]. Moscow, MIFI Publ., 2005. 40 p.
11. Gusev V.I., Vladimirov A.V., Serdyukov A.V. Razrabotka i realizaciya parallel'nogo algoritma rascheta nejtronnykh potokov dlya programmnogo bloka KARTA [Development and Implementation of Parallel Algorithm for Calculation of Neutron Fluxes for the Software Block “KARTA”]. Trudy 7 mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Obespechenie bezopasnosti AES s VVER» [Proc. 7th Int. Sci. Tech. Conf. “Safety Assurance of NPP with VVER”]. Podol'sk, 2011.
12. Recent developments in DYNSUB: new models, code optimization and parallelization. M. Daeubler, N. Trost, J. Jimenez et al. M&C 2013. USA, Sun Valley: 2013, pp. 1761-1772.