Martynov P.N., Askhadullin R.Sh., Osipov A.A.
A.I. Leypunsky Institute for Physics and Power, Obninsk, Russia
This paper presents the results of the synthesis technology of aluminum oxyhydroxides ultraporous Al2O3*n(H2O) (aerogel AlOOH) managed by the selective oxidation of binary liquid metal melts Ga-Al and Bi-Al. The prospects of creating a liquid metal technology of nanomaterials synthesis of a wide range, which is managed by the selective oxidation of metal dissolved in an inert with respect to the oxidant used liquid metal media. The results of studies of the aerogel AlOOH properties are
presented . Based on microstructural studies revealed that the aerogel has a stable fibrous nanostructure with "stretching" anisotropy , the fiber diameter of from 5 to 15 nm. Results of studies on thermal properties of the aerogel and its elemental composition are presented. It has been determined that aerogel has low thermal conductivity (~ 0.02-0.03 W/(m·K) within rather wide temperature range, namely: 130-1500 K. Studies on using small additives of AlOOH aerogel (0.5-5 wt.%) to ceramic materials based on silicon nitride Si3N4, silicon carbide SiC, and zirconium dioxide ZrO2 showed that aerogel additive made it possible to increase physical and mechanical characteristics of ceramics by 20-30% at the average.
1. Baker J. Look into the Seeds of Time. Science, 2006, vol.314, no.5806, 1707p.
2. Brownlee D. et al. Comet 81P/Wild 2 Under a Microscope. Science, 2006, vol.314, no.5806, pp.1711-1716.
3. Miller J.B., Rankin S.E., Ko E.I. Strategies in Controlling the Homogeneity of Zirconia-Silica Aerogels: Effect of Preparation on Textural and Catalytic Properties. Journal of Catalysis, 1994, vol.148, no.2, pp.673-682.
4. Friske J. Aerogels. Berlin, Heidelberg Publ.; New-York, Springer – Verlag Publ., 1986, p.2.
5. Teichner S.J., Ibidem. p.22.
6. Pajonk G.M., Teichner S.J., Ibidem. p.193.
7. Lecomptr P., et. al. Physica Scripta, 1981, vol. 23. p. 376.
8. Poelz G., Riethmuller R. Preparation of silica aerogel for Cherenkov counters. Nuclear Instruments and Methods in Physics Research, 1982, vol. 195, no.3, p. 491-503.
9. Cantin M., Casse M., Koch L., Jouan R., Mestreau P., Roussel D., Saclay C., Bonnin F., Moutel J., Teichner S.J. Silica aerogels used as Cherenkov radiators. Nuclear Instruments and Methods, 1974, vol.118, no.1 pp.177-182.
10. Hrubesh L.W., Tillotson T.M., Poco J.F., Zelinski B.J.J., Brinker C.J., Clark D.E., Ulrich D.R. Better Ceramics Through Chemistry IV. Proceedings MRS Symposia no.180 "Materials Research Society".
Pittsburgh, 1990, p. 315.
11. Askhadullin R.Sh., Martynov P.N., Yudintsev P.A., Kurina I.S. "Zhidkometallicheskaya" tekhnologiya sinteza aerogelya Al2O3 H2O i ego primenenie dlya polucheniya usovershenstvovannykh keramicheskikh materialov ["Liquid metal" technology of synthesis Al2O3 H2O airgel and its application for advanced ceramic materials.]. Nanotekhnika – Nanoequipment, 2005, no.2, p.15-18.
12. Askhadullin R.Sh., Martynov P.N., Yudintsev P.A., et al. Novye tekhnologii i fil'try dlya ochistki vozdukha na AES [New technologies and filters for air purification plant]. Novye promyshlennye tekhnologii – New Industrial Technologies, 2004, no.3, pp.39.
13. Chan M., Mulders N., Reppy J. Helium in aerogel. Physics Today, 1996, vol.8, no.49, pp.30-38.
14. Halperin W.P., Sauls J.A. Helium-Three in Aerogel. Available at: arXiv:cond-mat/0408593v1 (accessed 24 February 2016).
15. Dmitriev V.V., Askhadullin R.Sh., Martynov P.N., Osipov A.A., Krasnikhin D.A., Senin A.A., Yudin A.N., Phase diagram of superfluid 3He in "nematically ordered" aerogel. JETP Letters, 2012, vol. 95, no.6, p. 355 – 360.
16. Teichner S.J., J. Fricke. Aerogels. Proceedings of the First International Symposium. New York, 1985, p. 22.
17. Kistler S.S. Coherent Expanded Aerogels and Jellies. Nature, 1931, vol.127, pp. 741. doi:10.1038/127741a0
18. Teichner S.J. Nicolaon G.A., Vicarini M.A., Gardes G.E.E. Introduction of Metal Alkoxides for Production of Aerogels. Colloid and Interface Science, 1976, 5(3), 245-73.
19. Astier M., Delmon B. Preparetion of Catalyst. Amsterdam, Elsevier Publ., 1976, p. 315
20. Schmidt H., Scholze H., Ibidem, p. 49.
21. Woignier T., Phalippou J., Zarzucki J. Monolithic aerogels in the systems SiO2-B2O3, SiO2-P2O5, SiO2-B2O3-P2O5. Journal of Non-Crystalline Solids, 1984, vol. 63, p. 117.
22. Askhadullin R. Sh., Martynov P.N., Yudintsev P.A., Simakov A.A., Chaban A.Yu., Matchula E.A., Osipov A.A. Liquid metal based technology of synthesis of nanostructured materials (by the example of oxides). These materials properties and applications areas. Journal of Physics: Conference Series, 2008, vol.98, no.7. doi:10.1088/1742-6596/98/7/072012
23. Pollanen J., Shirer K.R., Blinstein S., Davis J.P., et.al. Globally anisotropic high porosity silica aerogels. Journal of Non-Crystalline Solids, 2008, vol.354, no.40-41, pp.4668-4674.
24. Martynov P.N., Askhadullin R.Sh., Yudintsev P.A., et al. Proceedings of the Regional Competition of Projects in the Field of Natural Sciences. Kaluga, 2004, no.6.
25. Korableva E.A., Martynov P.N., Askhadullin R.Sh., et al. Proceedings of the International Scientific and Practical Conference on The Fine-Grained and Ultra-Disperse Materials in Industry (Properties and Application). St-Petersburg, 2003, pp.56.