Wallenius J., Suvdantsetseg E., Bortot S., Pukari М., Jolkkonen M., Claisse A., Olsson P., Ejenstam J., Szakalos P.
Kungliga Tekniska Högskolan, Stockholm, Sweden
ELECTRA-FCC (European Lead Cooled Training Reactor – Fuel Cycle Centre) consists of a 0.5 MW fast reactor with (Pu, Zr)N fuel, cooled by natural convection of liquid lead, a facility for separation of spent LWR fuel and a fuel fabrication facility. The center is intended to function as a training facility in support of MYRRHA and ALFRED reactors. It will permit to carry out highly innovative research on fast reactor dynamics and fuel cycle processes. In the paper, the technological choices are discussed and activities on qualifying materials and fuels for ELECTRA are reviewed.
1. Yasuo Arai, Kunihisa Nakajima. Preparation and characterisation of PuN pellets containing ZrN and TiN. Journal of Nuclear Materials, 2000, vol.281, no.2-3, pp.244-247. doi:10.1016/S0022-3115(00)00393-7
2. Yasuo Arai, Mitsuo Akabori, Kazuo Minato. JAEA’s Activities on Nitride Fuel Research for MA Transmutation. Proc. 9th IEM on Actinide and Fission Product Partitioning and Transmutation, OECD/NEA. Paris, 2006.
3. Basini V., Ottaviani J.P., Richaud J.C., Streit M., Ingold F. Experimental assessment of thermophysical properties of (Pu,Zr)N. Journal of Nuclear Materials, 2005, vol.344, no. 1-3, pp.186-190.
4. Sara Bortot et al. A mathematical model for ELECTRA transient and stability analysis. Proc. Int. Conf. on Fast Reactors and Related Fuel Cycles – FR13. Paris, 2013.
5. Cahalan J.E., Fanning T.H. The SAS4A/SASSYS-1 Safety Analysis Code System. ANL/NE-12/4, Argonne National Laboratory, 2012.
6. Budylkin N.I. et al. The strong influence of displacement rate on void swelling in variants of Fe–16Cr–15Ni–3Mo austenitic stainless steel irradiated in BN-350 and BOR-60. Journal of Nuclear Materials, 2004, vol.329–333, pp.621-624. doi:10.1016/j.jnucmat.2004.04.344
7. Chen X.-N. et al. Safety Analysis of the Lead-Bismuth Eutectic Cooled Accelerator Driven System XTADS. Proc.of the 18th Internat.Conf.on Nuclear Engineering (ICONE-18), Xi'an, 2010.
8. Coccoluto et al. Heavy liquid metal natural circulation in a one-dimensional loop. Nuclear Engineering and Design, 2011, vol.241, no.5, pp.1301-1309. doi:10.1016/j.nucengdes.2010.06.048
9. Egnell L., Andersson T., et al. Structure and properties of a Q3 251 19Cr–25Ni–Mo–Ti steel. Proc. of MiCon 78, ASM STP 672. 1979.
10. Fink J.K. Results of Cursory Literature Review on Lead Thermophysical properties. ANL IntraLaboratory Memo, 1998.
11. Garner F.A. Radiation damage in austenitic steels. Comprehensive Nuclear Materials, 2012, vol 4, pp.33-95. doi:10.1016/B978-0-08-056033-5.00065-3
12. Mikael Jolkkonen, Marco Streit, Janne Wallenius. Thermo-chemical modelling of uranium-free nitride fuels. Journal of Nuclear Science and Technology, 2004, vol.41, no.4, pp.457-465.
13. Mikael Jolkkonen. Report on Source Term Assessment for the EDTR. LEADER report TEC-064, KTH/EA. 2012.
14. Kireev G.A. et al. Studies of the thermal conductivity and high-temperature creep of nitride nuclear fuel with an inert matrix based on ZrN. PAST. Series Material Science and New Materials, 2006, no. 2 (67), pp.130.
15. Leibowitz, Blomquist R.A. Thermal conductivity and thermal expansion of stainless steels D9 and HT9. Thermophysics, 1988, vol.9, no.5, pp.873-883.
16. Müller G., Schumacher G. and Zimmermann F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels. Journal of Nuclear Materials, 2000, vol.278, no.1, pp.85-95. doi:10.1016/S0022-3115(99)00211-1.
17. Müller et al. Behaviour of steels in flowing liquid PbBi eutectic alloy at 420-600°C after 4000-7200 h. Journal of Nuclear Materials, 2004, vol.335, no.2, pp.163-168. doi:10.1016/j.jnucmat.2004.07.010
18. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies. OECD/NEA Nuclear Science Committee. no.6195, 2007.
19. Tsuyoshi Nishi et al. Thermal Conductivities of Zr-based Transuranium Nitride Solid Solutions. Journal of Nuclear Science and Technology, 2011, vol.48, pp.359-368. doi:10.1088/1757-899X/9/1/012017
20. Merja Pukari. Experimental and theoretical studies of nitride fuels. PhD thesis, KTH, 2013.
21. Merja Pukari, Masahide Takano. Sintering and characterization of (Pu,Zr)N. Journal of Nuclear Materials, 2014, vol.444, no.1-3, pp. 7-13. doi:10.1016/j.jnucmat.2013.09.001
22. Ramsdell J.V. et al. RASCAL 4: Description of Models and Methods. Report US NRC. 2012.
23. Rogozkin B.D. et al. Post irradiation studies of plutonium mononitride and oxide fuel with an inert matrix and burnup of about 19% h.a. in BOR-60. Atomic Energy, 2011, vol.109, no.6, pp.369-373.
24. Skupov et al. Investigation of thermal stability of nitride compositions being developed for minor actinide burning. PAST. Series Material Science and New Materials, 2006, no.2 (67).
25. Streit et al. Zirconium nitride as inert matrix for fast systems. Journal of Nuclear Materials, 2003, vol.319, no.1, pp.51-58. doi:10.1016/S0022-3115(03)00133-8
26. Erdenechimeg Suvdantsetseg, Janne Wallenius, Sara Bortot. Optimization of the reactivity control drum system of ELECTRA. Nuclear Engineering and Design, 2012, vol.252, pp.209-214. doi:10.1016/j.nucengdes.2012.07.005
27. Erdenechimeg Suvdantsetseg, Janne Wallenius. An assessment of prompt neutron reproduction time in a reflector dominated fast critical system: ELECTRA. Submitted to Annals of Nuclear Energy, 2013.
28. Masahide Takano et al. Lattice thermal expansions of NpN, PuN and AmN. Journal of Nuclear Materials, 2008, vol.376, no.1, pp.114-118. doi:10.1016/j.jnucmat.2008.01.020
29. Masahide Takano et al. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides. Journal of Nuclear Materials, 2009, vol.389, no.1, pp.89-92. doi:10.1016/j.jnucmat.2009.01.012
30. Janne Wallenius. The CONFIRM experience on fabrication, irradiation and PIE of (Pu,Zr)N fuel. IAEA technical meeting on fast reactor fuels. Obninsk, 2011.
31. Janne Wallenius, Erdenechimeg Suvdantsetseg, Andrei Fokau. ELECTRA: European Lead Cooled Training Reactor. Nuclear Technology, 2012, vol.177, no.3, pp.303-313.
32. Wilson. Sandvik Tubes for Nuclear Applications. GenIVFin Workshop. Lappeenranta, 2011.