Chechev V.P. 
 Khlopin Radium Institute, St. Petersburg, Russia 
 
 The  methodology  of  radionuclide  decay  data  evaluation  is  discussed  that  produced  within  the international cooperation Decay Data Evaluation Project (DDEP). Particular attention is paid to the methods  of  analysis,  selection and  statistical processing of  published  experimental  data  which  are used  to  obtain  the  recommended  values  of  nuclear  characteristics  and  their  uncertainties.  These methods are compared for two high-quality decay data libraries  – ENSDF and DDEP. Regardless of the evaluation methodology,  when choosing  a particular group of  applied radionuclides  the  library ENSDF  compared  with  DDEP  has  the  disadvantage  of  inequality  of  recommended  data  for radionuclides  with  different  mass  numbers  due  to  the  time  factor  for  evaluations  made  on  mass chains. With regard to the evaluation methodology, the ENSDF file often focuses on the choice of the experimental values with the smallest  uncertainty  reported, while the DEEP methodology assumes  a control  of  published  experimental  results  and  their  uncertainties.  For  the  specialists  that  use radionuclides the recommended DEEP data are more attractive, but they do not cover all nuclides. The current state of  the  cooperation DEEP works, its  member staff  and publications are presented. The  methods  for  evaluating  decay  data  adopted  by  the  working  group  of  DEEP  are  considered  in detail.  The list of the main decay characteristics  evaluated, codes and procedures for evaluation  are discussed.  It  is  noted  that  the  procedure  of  relative  statistical  weight  limitation  by  50%  plays  an important role in the statistical processing of experimental data. It is important also the rule adopted in the DDEP evaluations to obtain realistic data  uncertainties according to which  the uncertainty of the  recommended  value  should  not  be  less  than  the  smallest  uncertainty  reported  in  the  selected experimental results used to calculate the average. 
 1.  Evaluated  Nuclear  Structure  Data  File  (ENSDF).  Available  at:  http://www.nndc.bnl.gov/ensdf/ (accessed 25.12.2015) 
2. Nuclear  Data  Sheets.  Available  at:  http://www.sciencedirect.com/science/journal/00903752  (accessed 25.12.2015) 
3. Helmer R.G., Browne E., Bй  M.-M. International Decay Data Evaluation Project.  Journal of Nuclear Science and Technology, 2002, vol. 2, no.1, p. 455. 
4. Bй  M.-M.,  Chistй  V.,  Dulieu  C.,  Browne  E.,  Chechev  V.,  Kuzmenko  N.,  Helmer  R.,  Nichols  A., Shцnfeld E., R. Dersch.  Table of Radionuclides (A=7 to 150). Monographie BIPM-5.  Sevres: Bureau International des Poids et Mesures. France, 2004, vol.1. 
5. Bй  M.-M.,  Chistй  V.,  Dulieu  C.,  Browne  E.,  Chechev  V.,  Kuzmenko  N.,  Helmer  R.,  Nichols  A., Shцnfeld E., Dersch R.  Table of Radionuclides (A=151 to 242). Monographie BIPM-5. Sevres: Bureau International des Poids et Mesures. France, 2004, vol.2. 
6. Bй  M.-M.,  Chistй  V.,  Dulieu  C.,  Browne  E.,  Chechev  V.,  Kuzmenko  N.,  Helmer  R.  Kondev  F., MacMahon D., Lee K.B.  Table of Radionuclides (A=3 to 244). Monographie BIPM-5. Sevres: Bureau International des Poids et Mesures. France, 2006, vol.3. 
7. Bй M.-M., Chistй V., Dulieu C., Browne E., Chechev V., Kuzmenko N., F. Kondev, Luca A., Galan M., Pearce A., Huang X.  Table of Radionuclides (A=133 to 252). Monographie BIPM-5. Sevres: Bureau International des Poids et Mesures. France, 2008, vol.4. 2008. 
8. Bй M.-M., Chistй V., Dulieu C., Mougeot X., Browne E., Chechev V., Kuzmenko N., Kondev F., Luca A.,  Galan  M.,  Arinc  A.,  Huang  X.  Table  of  Radionuclides  (A=22  to  244).  Monographie  BIPM-5. Sevres: Bureau International des Poids et Mesures. France, 2010, vol.5. 
9. Bй M.-M., Chistй V., Dulieu C., Mougeot X., Browne E., Chechev V., Kuzmenko N., Kondev F., Luca A.,  Galan  M.,  Nichols  A.L.,  Arinc  A.,  Pearce  A.,  Huang  X.,  Wang  B.  Table  of  Radionuclides (A=22  to  242).  Monographie  BIPM-5.  Sevres:  Bureau  International  des  Poids  et  Mesures.  France, 2011, vol. 6. 
10. Bй M.-M., Chistй  V., Dulieu C., Mougeot X., Chechev V., Kondev F., Nichols A.L., Huang X., Wang B.  Table  of  Radionuclides  (A=14  to  245).  Monographie  BIPM-5.  Sevres:  Bureau  International  des Poids et Mesures. France, 2013, vol.7. 
11. Mini Table of Radionuclides 2015. EDP Sciences 2015. 
12. Bй  M.M.,  Duchemin  B.,  Lamй  J.  An  interactive  database  for  decay  data.  Nuclear  Instruments  and Methods in Physics Research, 1996, vol.369, no.2-3,  pp.523–526.  doi:10.1016/S0168-9002(96)80043-X. 
13. Wang M., Audi G., Wapstra A.H., Kondev F.G., MacCormick M., Xu X., Pfeiffer B. The AME2012 atomic mass evaluation (II). Tables, graphs and references.  Chinese Physics, 2012, vol.C36, p.1603. 
14. Browne  E.  Limitation  of  Relative  Statistical  Weights,  a  method  for  evaluating  discrepant  data. INDC(NDS)-363, IAEA, Veinna, 1998. 
 MacMahon T.D., Browne E. LWEIGHT, a computer program to calculate averages, Version 1.3, 2000. 
15. Bй M.-M., Chechev V.P. Recommended standards for gamma ray intensities. Nuclear Instruments and Methods in Physics Research, 2013, vol.728, pp. 157-172. doi:10.1016/j.nima.2013.05.134 
16. Bй M.-M., Chechev V.P., Pearce A. Uncertainties in nuclear decay data evaluations.  Metrologia, 2015, vol.52, p. S66. 
17. Schцnfeld E., JanЯen H. Calculation of emission probabilities of X-rays and Auger electrons emitted in radioactive disintegration processes.  Applied Radiation and Isotopes,  2000. vol. 52, no.3, pp.595-600. doi:10.1016/S0969-8043(99)00216-X 
18. Guide to the expression of uncertainty in measurement. ISO CH-1211. Genиve, 1993. 
19. Huang X., Yin S., Deng C. Evaluation of the decay data of 109Cd.  Nuclear Instruments and Methods in Physics Research, 2010, vol.621, no. 1-3, pp.443-446. doi:10.1016/j.nima.2010.05.053 
20. Huang  X.  Evaluation  the  decay  data  of 153Gd.  Applied  Radiation  and  Isotopes,  2010,  vol.  68,  no.3, pp.418-421. doi:10.1016/j.apradiso.2009.08.020 
21. Chechev V.P., Bй M.-M. Radioactive equilibrium: 99Mo/99mTc decay characteristics.  Applied Radiation and Isotopes, 2014, vol.87, pp.132-136. doi:10.1016/j.apradiso.2013.11.011 
22. Chechev  V.P.,  Kuz'menko  N.K.  Novaya  otsenka  kharakteristik  raspada  i  izlucheniy 198Au  [A  new evaluation of 198Au  decay characteristics and radiation].  Izvestiya Rossiyskoy akademii nauk, seriya fizicheskaya  –  Proceedings of the Russian Academy of Sciences,  physical series,  2015,  vol.  79, no.7.  p. 920.  
23. Chechev  V.P.,  Kuzmenko  N.K.  Decay  data  evaluation  project  (DDEP):  Updated  evaluations  of  the 233Th and 241Am decay characteristics.  Applied Radiation and Isotopes,  2010, vol.68, no.7-8, pp.1578-1582. doi:10.1016/j.apradiso.2009.11.032 
24. Nuclear Science References (NSR). Available at: http://www.nndc.bnl.gov/nsr/ (accessed 25.12.2015) 
25. Chechev  V.P.,  Huang  X.  Decay  data  of  radionuclides  along  the  valley  of  nuclear  stability  for astrophysical  applications.  Applied  Radiation  and  Isotopes,  2015,  vol.105,  pp.114-118. doi:10.1016/j.apradiso.2015.07.018 
26. Badikov S. Criteria of the validation of experimental and evaluated covariance data.  Proceedings of the International Conference ND-2007. Nice, vol.1, pp.273. 
27. Badikov S.A., Chechev V.P. Procedure for statistical analysis of one-parameter discrepant experimental data.  Applied  Radiation  and  Isotopes,  2012,  vol.70,  no.9,  pp.1850-1852. 
doi:10.1016/j.apradiso.2012.02.028 
28. Badikov  S.A.,  Chechev  V.P.  A  self-consistent  evaluation  of 242Cm  alpha  and  gamma  emission intensities.  Applied  Radiation  and  Isotopes,  2014,  vol.87,  pp.  137-141.
doi:10.1016/j.apradiso.2013.11.086