Ivanov E.F., Privezentsev V.V., Sorokin A.P., Hafizov R.R., Trufanov A.A.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Calculation modeling of ULOF type accidents for sodium fast reactor indicates coolant boiling initiation in the reactor core. Significant impact on calculation results is provided by two-phase flow calculation model used in the code and which requires experimental verification. In order to eliminate
the possibility of development accidental situations leading to fuel pins destruction, it was proposed
implementation of sodium cavity above reactor core. On the facility created at SSC RF – IPPE were obtained experimental data on boiling heat exchange in the fast reactor fuel subassembly model with sodium cavity under natural and forced coolant circulation conditions. The possibility of long-term fuel subassembly cooling at heat fluxes from 140 to 170 kW/m2 was shown under natural and forced convection respectively. The data obtained used torefine the sodium boiling calculation model and verification of the COREMELT code.
1. Volkov A.V., Kuznetsov I.A. Usovershenstvovannaya model' kipeniya natriya dlya analiza avarij v bystrom reaktore [Advanced model of sodium boiling for the analysis of fast reactor accidents]. Izvestiya vuzov. Yadernaya energetika - Proseedingsof Universities. Nuclear Power, 2006, no. 2, pp. 101–111.
2. Ashurko Yu.M., Andreeva K.A., Bur'evskij I.V. et. al. Issledovanie vliyaniya natrievogo pustotnogo
effekta reaktivnosti na bezopasnost' bystrogo natrievogo reaktora bol'shoj moshchnosti [Research of influence of the sodium hollow effect of reactivity on safety of sodium fast reactor with high power]. Izvestiya
vuzov. Yadernaya energetika - Proseedings of Universities. Nuclear Power, 2014, no. 3, pp. 5–13.
3. Haga K. Loss of flow experiment in a 37 pin bundle LMRBR Fuel assembly. Nuclear Engineering and
Design, 1984, vol. 82, pp. 305–318.
4. Yamaguchi K. Flow pattern and dryout under sodium boiling conditions at decay power levels. Nuclear Engineering and Design, 1987, vol. 99, no. 3, pp. 247–263.
5. Huber F., Kaiser A., Mattes K. and Peppler W. Steady State and Transient sodium boiling experiments
in a 37 pin bundle. Nuclear Engineering and Design, 1987, vol. 100, pp. 377–386.
6. Gnatt P.A., Carbajo J.J., Dearing J.F. Sodium boiling experiments in the THORS Facility. Nuclear Engineering and Design, 1984, vol. 82, pp. 241–280.
7. Seiler J.M. Studies on sodium boiling phenomena in out-of-pile rod bundles for various accidental situation in LMFBR: experiments and interpretations. Nuclear Engineering and Design, 1986, vol. 82,
pp. 227–239.
8. Sorokin A.P., Efanov A.D., Ivanov E.F. et. al. Teploobmen pri kipenii zhidkogo metalla v rezhime avarijnogo raskholazhivaniya bystrogo reaktora [Heat transfer at liquid metal boiling in regime of emergency cooling of fast reactor]. Atomnaya energiya - Atomic Energy, 1999, vol. 87, no. 5, pp. 337–342.
9. Sorokin A.P., Efanov A.D., Ivanov E.F. et. al. Raschetno-eksperimental'nye issledovaniya uslovij
ustojchivogo teploobmena pri vozniknovenii kipeniya zhidkogo metalla v rezhime avarijnogo raskholazhivaniya bystrogo reaktora [Numerical and experimental investigations of conditions of stable heat transfer at start of liquid metal boiling in regime of emergency cooling of fast reactor]. Izvestiya vuzov. Yadernaya energetika - Proseedingsof Universities. Nuclear Power, 1999, no. 2, pp. 59–70.
10. Efanov A.D., Sorokin A.P., Ivanov E.F. et. al. Issledovaniya teploobmena i ustojchivosti kipeniya
zhidkometallicheskogo teplonositelya v konture estestvennoj cirkulyacii [Investigations of heat transfer
and stability of liquid metal boiling in natural convection contour]. Teploenergetika - Thermal
Engineering, 2003, no. 3, pp. 20–26.
11. Sorokin G.A., Ninokata H., Endo H. et. al. Eksperimental'noe i raschyotnoe modelirovanie teploobmena pri kipenii zhidkogo metalla v sisteme parallel'nyh teplovydelyayushchih sborok v rezhime
estestvennoj konvekcii [Experimental and numerical modelling of heat transfer at liquid metal boiling in
system of parallel fuel assemblies under natural convection]. Izvestiya vuzov. Yadernaya energetika -
Proseedings of Universities. Nuclear Power, 2005, no. 4, pp. 92–106.
12. Efanov A.D., Sorokin A.P., Ivanov E.F. et. al. Teploobmen pri kipenii zhidkogo metalla v sisteme
kanalov v rezhime estestvennoj cirkulyacii [Heat transfer at liquid metal boiling in channels system under natural convection]. Teploenergetika - Thermal Engineering, 2007, no. 3, pp. 43–51.
13. Zejgarnik Yu.A., Litvinov V.D. Kipenie shchelochnykh metallov v kanalakh[Boiling of alkali metals in channels]. Moscow, Nauka Publ., 1983.
14. Borishansky V.M., Kutateladze S.S., Novikov I.I., Fedynsky O.S. Zhidkometallicheskie teplonositeli [Liquid metal coolants]. Moscow, Atomizdat Publ., 1976.