Authors & Affiliations
Zhukov A.V., Kuzina U.A., Sorokin A.P., Privezentsev V.V., Rymkevich K.S.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Kuzina U.A. - Head of Laboratory of Safety Department, Cand. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering. Contacts: 1, sq. Bondarenko, Obninsk, Kaluga reg., Russia, 249033, Tel.: (484) 399-83-63, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Zhukov A.V. – Leading researcher of Safety Department, Dr. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering.
Sorokin A.P. – Deputy Director of Safety Department, Dr. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering.
Privezentsev V.V. – Leading researcher of Safety Department, Cand. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering.
Rimkevich K.S. – Leading engineer of Safety Department, A.I. Leypunsky Institute for Physics and Power Engineering.
Abstract
As a result of experimental thermal hydraulic research using a model fuel assembly of BREST reactor core with spacer grids in the area of the non-heated bearing rod experimental data describing the bearing rod effect to the temperature fields and heat transfer of fuel pin simulators were for the first
time obtained. It is revealed that temperature of surface of the measuring pin simulator and coolant
temperature in the cells near the bearing rod decrease. Thus «the temperature hole» that influences
to heat transfer and maximum temperature non-uniformities along the perimeter of fuel pin simulators near the bearing rod is formed. In the model with the bearing rod on the smooth heating areas
the maximum temperature non-uniformity along the perimeter of the measuring pin simulator increased three times at Pe≅1150 in comparison with the model without the bearing rod. The spacer
grids in the model with the bearing rod result to some increase in non-uniformities (about 20%).When
processing temperature fields along the whole perimeter of the measuring fuel pin simulator decrease
in Nusselt numbers is about 10% in comparison with the model assembly without the bearing rod.
The reason is the increased temperature non-uniformities along the perimeter of the measuring pin
simulator. The spacer grids result in local increase of Nusselt numbers ~25% up in comparison with
smooth heating areas at Pe≅1150.
Keywords
fast reactor, liquid metal coolant, fuel assembly, fuel pin simulators, spacer grids, non-heated bearing rod, experimental thermal hydraulic research, heat transfer, temperature field, smooth heating areas
Article Text (PDF, in Russian)
References
1. Zhukov A.V., Kuzina U.A., Privezentsev V.V., Sorokin A.P. Temperaturnyie polya i teplootdacha v razdvinutyikh reshetkakh tvelov, okhlazhdaemyikh tyazhelyim zhidkometallicheskim teplonositelem [Temperature fields and heat transfer in wide pin bundles with liquid metal coolant]. Trudy 3 mezhdunarodnoy nauchno-tehnicheskoy konferentsii "Innovatsionnyie proektyi i tehnologii yadernoy energetiki" (MNTK NIKIET-2014) [Proc. 3th Int. Sci. Conf. "Innovative projects and nuclear energy technologies" (IRTC NIKIET 2014)]. Moscow, 2014, vol.1, pp. 433-442.
2. Zhukov A.V., Kuzina U.A., Privezentsev V.V. et.al.Sravnenie temperaturnyikh poley i teplootdachi v
razdvinutyikh reshetkakh (s/d= 1,33) gladkikh tvelov i tvelov s razlichnyim distantsionirovaniem (teplonositel – zhidkiy metall) [Comparison of temperature fields and heat transfer in broad bundles
(s/d= 1,33) of smooth pins for various spacing]. Trudy nauchno-tehnicheskoy konferentsii "Teplofizika
reaktorov na byistryikh neytronakh (Teplofizika-2014)" [Proc. Sci. Tech. Conf. "Heat And Mass Transfer And Properties Of Liquid Metals (Thermal Physics-2014)"]. Obninsk, 2014, pp. 78-79.
3. Zhukov A.V., Kuzina U.A., Sorokin A.P., Privezentsev V.V. Temperaturnyie polya, teplootdacha i
mezhkanalnyiy obmen v reshetkakh tvelov aktivnyikh zon reaktorov s tyazhelyim teplonositelem [Temperature fields, heat transfer and inter-channel exchange in pin bundles of reactor cores with heavy metal coolant]. Trudy 6 Rossiyskoy natsionalnoy konferentsii po teploobmenu (RNKT-6)[Proc. 6th Rus. Nat. Conf. on Heat Transfer (RNKT-6)]. Moscow, 2014, pp. 97-98.
4. Zhukov A.V., Sorokin A.P. et.al. Metodicheskie ukazaniya i rekomendacii po teplogidravlicheskomu
raschetu aktivnykh zon bystrykh reaktorov [Guidelines and recommendations for thermohydraulic calculation of fast reactor cores]. RTM 1604.008-88. Obninsk, IPPE Publ., 1989. 435 p.
5. Kirillov P.L., Bobkov V.P., Zhukov A.V., Yuriev Yu.S. Spravochnik po teplogidravlicheskim
raschetam v yadernoy energetike. Tom 1. Teplogidravlicheskie processy v YaEU [Handbook of thermohydraulic calculations in nuclear power engineering. Vol. 1. Thermo hydraulic processes in power
reactor facilities]. Moscow. AT Publ, 2010.
6. Subbotin V.I., Ibragimov M.H., Ushakov P.A., Bobkov V.P., Zhukov A.V., Yur'ev Yu.S. Gidrodinamika i teploobmen v atomnykh energeticheskikh ustanovkakh (osnovy rascheta) [Hydrodinamics
and heat transfer in nuclear power plants (basis of calculation)]. Moscow, Atomizdat Publ., 1975.
7. Ushakov P.A. Priblizhennoe teplovoe modelirovanie cilindricheskikh teplovydelyayuschikh elementov.
Zhidkie metally [Approximate thermal modeling of cylindricalfuel elements. Liquid metals]. Moscow,
Atomizdat Publ., 1967.
8. Zhukov A.V., Sorokin A.P., Sviridenko E.Ya., Hudasko V.V. Eksperimentalnoe i raschetnoe
modelirovanie teploobmennyikh apparatov, datchiki, metodiki. Zhidkometallicheskiy stend [Experimental and calculation modeling of heat exchangers, sensing elements, techniques. Liquid metal test facility]. Obninsk, IATE Publ., 1992.
9. LMR core and heat exchanger thermohydraulic design: Former USSR and present Russian approaches.
IAEA-TECDOC-1060. Vienna, IAEA, 1999.
10. Minashin V.E., Subbotin V.I., Sholokhov A.A. Primenenie mikrotermopar v issledovaniyakh teploperedachi. Voprosyi teploobmena [Application of micro-thermocouples for heat transfer studies. Heat transfer problems]. Moscow, Atomizdat Publ., 1959.
UDC 621.039
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2016, issue 5, 5:14