Zinchenko A.S.1, Gomin E.A.2, Davidenko V.D.2, Harchenko I.K.2
1N.A. Dollezhal Research and Development Institute of Power Engineering, Moscow, Russia
2National Research Center "Kurchatov Institute", Moscow, Russia
The computer code KIR intended for calculations of nuclear reactors kinetics using Monte Carlo method is described. The algorithm realized in the code is exhaustively described. Some results of test calculations are given.
1. Veynberg A., Vigner E. Fizicheskaya teoriya yadernykh reaktorov [Physical theory of nuclear reactors]. Moscow, Inostrannaya literatura Publ., 1961. 732 p.
2. TOP500 Supercomputer Sites (1993-2016). Available at: http://www.top500.org/ (accessed 14.02.2017).
3. Zhitnik N.V, Ivanov A.K., Marshalkin V.E., Ognev S.P., Pevnitsky A.V., Povyshev V.M., Ponomarev I.E., Roslov V.I., Semenova T.I., Tarasov V.A., Fomin V.P., Taivo T.A., Yang W.S.Code TDMCC for Monte Carlo Computations of Spatial Reactor Core Kinetics. The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World. Chattanooga, Tennessee, USA, 2005.
4. Zhitnik A.K., Ivanov N.V., Marshalkin V.E., Ognev S.P., Povyshev V.M., Roslov V.I., Semenova T.V., Tarasov V.A. Programma TDMCC dlya raschetov prostranstvennoy neytronnoy dinamiki aktivnykh zon AES metodom Monte-Karlo [TDMCC program for the calculation of the spatial dynamics of neutron cores of nuclear Monte Carlo]. Trudy konf. "Nejtronika-2009" [Proc. conf "Neutronika-2009"]. Obninsk, 2009.
5. Sjenitzer B.L., Hoogenboom J.A. Dynamic Monte Carlo Method for Nuclear Reactor Kinetics Calculations. Nucl. Sci. Eng., 2013, vol. 175, pp. 94–107.
6. Sjenitzer B.L., Hoogenboom J.A. General purpose dynamic Monte Carlo with continuous energy for transient analysis. PHYSOR 2012 – Advances in Reactor Physics Linking Research, Industry and Education. Knoxville, Tennessee, USA, 2012.
7. Sjenitzer B.L., Hoogenboom J.A. Implementation of the dynamic Monte Carlo method for transient analysis in the general purpose code TRIPOLI. Int. Con. On Math. and Com. Meth. App. to Nuc. Sci. and. Eng. (M&C 2011). Rio de Janireo, RJ, Brazil, 2011.
8. Sjenitzer B.L., Hoogenboom J.A. Monte Carlo method for calculation on the dynamic behavior of nuclear reactors. Joi. INT. Con. On Supercom. in Nuc. App. and. Monte Carlo 2010 (SNA+MC2010). Tokio, Japan, 2010.
9. Legrady D., Hoogenboom J.E. Scouting the feasibility of Monte Carlo reactor dynamics simulations. Int. Con. on the Phys. of Rea. “Nuc. Pow.: A Sustai. Reso.”. Interlaken, Switzerland, 2008.
10. Shen H., Li Z., Wang K., Yu G. TMCC: a transient three-dimensional neutron transport code by the direct simulation method. PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance. Pitsburg, Penns., USA, 2010.
11. Leppanen J. Development of a dynamic simulation mode in SERPENT 2 Monte Carlo code. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2013). Sun Valley, Idaho, 2013, pp. 117-127.
12. Bell D., Glesston S. Teoriya yadernykh reaktorov [The theory of nuclear reactors]. Moscow, Atomizdat Publ., 1974. 496 p.
13. Davidenko V.D., Zinchenko A.S., Kharchenko I.K. Integral'nye nestatsionarnye uravneniya perenosa neytronov dlya raschetov kinetiki yadernykh reaktorov metodom Monte-Karlo [Integral non-stationary neutron transport equations for calculation of the kinetics of nuclear reactors Monte Carlo]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2015, no. 1, pp. 11-16.
14. Alekseev N.I., Bol'shagin S.N., Gomin E.A., Gorodkov S.S., Gurevich M.I., Kalugin M.A., Kulakov A.S., Marin S.V., Novosel'tsev A.P., Oleynik D.S., Pryanichnikov A.V., Sukhino-Khomenko E.A., Shkarovskiy D.A., Yudkevich M.S. Status MCU-5 [Status MCU-5]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2011, no. 4, pp. 4-23.
15. Santamarina A., Bernard D., Blaise P. Et al. The JEFF-3.1.1 Nuclear Data Library. JEFF Report 22 (2009). Available at: https://www.oecd-nea.org/dbdata/nds_jefreports/jefreport-22/nea6807-jeff22.pdf (accessed 14.02.2017).
16. Kipin Dzh.R. Fizicheskie osnovy kinetiki yadernykh reaktorov [Physical basis of nuclear reactor kinetics]. Moscow, Atomizdat Publ., 1967. 428 p.
17. ICSBEP, NEA/NCS/DOC(95)03/I, Nuclear Energy Agency, Paris (September 2004 Edition).
18. Cho N.Z., Yun S. Space-time reactor kinetics via Monte Carlo method. Int. Con. on the Phys. of Rea. “Nuc. Pow.: A Sustai. Reso.”. Interlaken, Switzerland, 2008.
19. Argonne Code Center: Benchmark Problem Book. ANL-7416, 1968, last rev. Dec. 1985.
20. Boyarinov V.F., Kondrushin A.E., Fomichenko P.A. Uravneniya metoda poverkhnostnykh garmonik dlya resheniya nestatsionarnykh zadach perenosa neytronov i ikh verifikatsiya [The equations of the method of surface harmonics for solving time-dependent problems of neutron transport and their verification]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2012, no. 2, pp. 18–27.