Bahdanovich R.B.1,2, Romanenko V.I.1, Khokhlov S.Y.1, Tikhomirov G.V.1
1National Research Nuclear University MEPhI, Moscow, Russia
2Belarusian State University, Minsk, Belarus
Calculation of an effective energy release in the fuel core is very important during the operation and design of a nuclear reactor. Use of the modern computing capacities and calculation methods allows to receive the results, close to reality, and also to solve problems inaccessible to the experimental consideration. Now the majority of calculating programs not absolutely correctly consider capture component of an energy release which is bound to reactions of neutron capture (reactions (n,γ), (n,α), etc.). When using approximate value of an effective energy release in the reactor, there can be an essential mistake in calculation of distribution of an energy release, burnup of fuel and characteristics of spent nuclear fuel. The developed method of calculation of components of an effective energy release in the nuclear reactor will allow to specify the used values of capture energy release for the fast reactors. The technique offered for calculation of a contribution of a capture component to the effective energy release in nuclear reactor assumes use of the high-precision codes based on a Monte-Carlo method (MCNP, MCU, SERPENT, etc.) which allows to carry out high-precision calculations and to receive the results which are very close to an experiment. Results of calculations of capture component fraction in an effective energy release for various models of the BN-600 reactor (with uranium fuel, the MOSS fuel, a hybrid fissile region) by three codes MCU 5, MCNP 4 and SERPENT 1.1.19 are given in work. It is shown that the fraction of capture component is approximately equal to 4-5% of an effective energy release. During the calculations we attempt to create a simple test model of the reactor for calculation of energy release components, taking into account its specific features.
1. Kopeikin V.I., Mikaelyan L.A., Sinev V.V. Reaktor kak istochnik antineytrino: teplovaya energiya deleniya [The reactor as a source of antineutrinos: thermal energy of fission]. Yadernaya fizika - Physics of Atomic Nuclei, 2004, vol. 67, no. 10, pp. 1916-1922.
2. Kramerov A.Y., Shevelev Y.V. Inzhenernye raschety yadernykh reaktorov [Engineering calculations of nuclear reactors]. Moscow, Energoatomizdat Publ., 1984. 736 p.
3. Pritychenko B., Sonzogni A. Q-value Calculator (QCalc) NNDC, Brookhaven National Laboratory. Available at: http://www.nndc.bnl.gov/qcalc/ (accessed 17.02.2017).
4. Nuclear Energy Agency, Java-based Nuclear Data Information System (JANIS), (2014). Available at: http://www.oecd-nea.org/janis/ (accessed 17.02.2017).
5. Gurevich M.I., Shkarovsky D.A. Raschet perenosa neytronov metodom Monte-Karlo po programme MCU [The neutron transport method according to the program of Monte Carlo MCU]. Moscow, MEPhI Publ., 2012. 154 p.
6. Jeremy E. Sweezy, X-5 Monte Carlo Team. MCNP5 Manual Vol I, II. USA., 2003. 340p.
7. Skorokhodov D.N., Tikhomirov G.V. Jaakko Leppдnen 2009 PSG2/Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code November 6, Methodology – User’s Manual – Validation Report The problem of estimating the accuracy of calculation of local tallies by means of the Monte Carlo method (Article). Physics of Atomic Nuclei, 2012, vol. 75, no. 14, pp. 1675-1678.
8. Bahdanovich R.B., Tikhomirov G.V., Saldikov I.S., Kryuchkov E.F. Method for calculation capturing reactions contribution to total energy release in nuclear reactors. PHYSOR 2014: American Nuclear Society’s Topical Meeting on Reactor Physics. Kyoto, Japan, 2014, pp. 7.
9. Tikhomirov G.V., Saldikov I.S., Ternovykh M.Yu., Gerasimov A.S. Contribution of Neutron Capturing Reactions in Precision Calculations of Total Energy Release in Nuclear Reactors. Proc. Global 2015. Paris, France, 2015.
10. Kuznetsov I.A., Poplavsky V.M. Bezopasnost' AES s reaktorami na bystrykh neytronakh [Safety of NPPsequipped with fast reactors]. Moscow, IzdAT Publ., 2012. 631 p.
11. Judd A.M. Reaktory-razmnozhiteli na bystrykh neytronakh [Fast Breeder Reactors Energoatomisdat]. Moscow, Energoatomizdat Publ., 1984. 137 p.
12. Usynin G.B., Kusmartsev E.V. Reaktory na bystrykh neytronakh [Fast Breeder Reactors]. Moscow, Energoatonizdat Publ., 1985. 288 p.
13. Walter A., Reynolds A. Reaktory-razmnozhiteli na bystrykh neytronakh [Fast breeder reactors]. Moscow, Energoatonizdat Publ., 1986.
14. Adamova E.O. Mashinostroenie. Entsiklopediya v soroka tomakh [Machinery. Encyclopedia forty volumes]. Moscow, Mashinostroenie Publ., 1994-2013.
15. Poltsev V.P., Guseva T.M. Rabotosposobnost' sterzhney suz bystrykh reaktorov i puti ee uvelicheniya [Operability of fast reactors control rods and the ways of its increase]. Dimitrovgrad, Scientific Research Institute of Atomic Reactors Publ., 1973.
16. Petchenkin V.A., Chernov K.G., Moiseev A.V., Eliseev V.A., Konobeev Y.V. Kharakteristiki povrezhdayushchey dozy v metallakh i konstruktsionnykh materialakh pri obluchenii v aktivnoy zone reaktorov BN i VVER [Characteristics of damaging dose in metals and construction materials under irradiation in the active area of the BN and VVER]. Obninsk, IPPE Publ., 2013.
17. Vasiliev B.A., Kuzavkov N.G., Mishin O.V., Radionycheva A.A., Farakshin M.R., Bibilashvili Yu.K., Ivanov Yu.A., Medvedev A.V., Mitrofanova N.M., Tselishchev A.V., Zabud'ko L.M., Matveev V.I., Khomyakov Yu.S., Chernyy V.A. Opyt i perspektivy modernizatsii aktivnoy zony reaktora BN [Experience and prospects of modernization of the reactor core BN-600]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2011, no. 1, pp. 158-168.
18. IAEA 2008 Thermophysical properties of materials for nuclear engineering: a tutorial and collection of data Vienna ISBN 978–92–0–106508–7.
19. IAEA 2009 BN-600 hybrid core benchmark analyses Vienna ISBN 978–92–0–109409–4 ISSN 1011-4289.