Authors & Affiliations
Golub E.V., Arnoldov M.N., Kurbatov I.M.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Golub E.V. – Researcher, A.I. Leypunsky Institute for Physics and Power Engineering. Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7(484) 396-99-47; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Arnoldov M.N. – Chief Researcher, Dr. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering.
Kurbatov I.M. – Senior Researcher, Dr. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering.
Abstract
Normal NPP operation involves transient dynamic modes (unit start-up, shutdown, power change, loop shutdown, implementation of equipment during unit operation etc.) that make it necessary to control the temperature of core elements in these conditions. Dynamic conditions of the environment impact the error of its temperature measurement. Thermal inertia is a characteristic dynamic property of core element temperature measurement channels.
Similarly to the conventional approach, the complex having time dimension is assumed as the time constant τi of the temperature measurement channel: cT/αTfT, where: fT - thermal detector heat exchange surface; cT – thermal detector total specific heat; αT – heat transfer coefficient to the thermal detector.
A method of determination of time constants of temperature measurement channels without dismantling is described. The method is based on the temperature signal lag after the power change of reactor unit. An example of method application is given. Additionally, the velocity of coolant in the controlled heat exchange channels is determined. The result accuracy estimation is performed. The presented algorithm of determination of time constants of temperature measurement channels under reactor operating conditions can be useful for temperature control reliability assurance in dynamic modes.
Keywords
reactor core channels, flow area, deviations, coolant velocity, correlation, thermal heat capacity, thermal inertia
Article Text (PDF, in Russian)
References
1. Baklushin R.P. Perekhodnye protsessy normal'noy ekspluatatsii AES [Transients in normal NPP operation]. Obninsk, IATE MEPHI Publ., 1999. 67 p.
2. Arnoldov M.N., Karzhavin V.A., Trofimov A.A. Osnovy metrologicheskogo obespecheniya temperaturnogo kontrolya reaktornykh ustanovok [Fundamentals of metrological support of reactir facility temperature control]. Moscow, MPEI Publ., 2012.
3. Shevyakov A.A., Yakovleva A.V. Inzhenernye metody rascheta dinamiki teploobmennykh apparatov [Engineering methods of transient analysis of heat exchange devices]. Moscow, Mashinostroenie, Publ., 1968.
4. Kuznetsov I.A. Avariynye i perekhodnye protsessy v bystrykh reaktorakh [Accident and transient processes in fast reactos]. Moscow, Energoatomizdat Publ., 1987.
5. Kramerov A.Ya., Shevelev Ya.V. Inzhenernye raschety yadernykh reaktorov [Engineering analysis of nuclear reactors]. Moscow, Energoatomizdat Publ., 1984.
6. Thermoelectric converters. TXA-745-01, TXA-746-01. Specifications TU25-02 (5?0.282.138)-78, A-7843, 1978.
7. Lysikov B.V., Prozorov V.K. Termometriya i raskhodometriya yadernykh reaktorov [Temperature and flow measurement of nuclear reactors]. Moscow, Energoatomizdat Publ., 1985.
8. Lysikov B.V., Prozorov V.K. Reaktornaya termometriya [Reactor temperature measurement]. Moscow, Atomizdat Publ., 1980.
9. GOST 6614-74. Preobrazovateli termoelektricheskie. Obshchie tekhnicheskie usloviya [GOST 6614-74. Thermoelectric converters. General specifications]. Moscow, Standards Publ., 1981.
10. Volkova S.N., Golub E.V., Gonchar N.I., Kurbatov I.M. Sposob opredeleniya raskhodov teplonositelya v kanalakh aktivnoy zony yadernogo reaktora [Method of determination of coolant flow rates in nuclear reactor core channels]. Avtorskoe svidetel'stvo - Certificate of authorship, no. 1841231, 2016.
11. Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [The theory of automatic control systems]. Moscow, Nauka Publ., 1975.
12. Solodovnokiv V.V. Vvedenie v statisticheskuyu dinamiku sistem avtomaticheskogo upravleniya [Introduction to statistical dynamics of automatic control systems]. Moscow-Leningrad, GITL Publ., 1952.
13. Reimarov G.A. Pervichnaya pererabotka informatsii v ASUTP [Primary information processing in process control systems]. Moscow, TSNIIatominform Publ., 1980.
14. Rumshinskiy L.Z. Matematicheskaya obrabotka rezul'tatov eksperimenta [Mathematical processing of experimental results]. Moscow, Nauka Publ., 1971. 192 p.
15. Doerfel' K. Statistika v analiticheskoy khimii [Statistics in analytical chemistry]. Moscow, Mir Publ., 1969.
16. Golub E.V., Sorokin A.P. Opredelenie skorostey teplonositelya v kanalakh aktivnoy zony reaktora v rabochikh rezhimakh po temperaturnym izmereniyam [Determination of coolant flow rates in reactor core channels in the operation conditions using temperature measurements]. Trudy nauchno-tekhnicheskoy konferentsii "Teplofizika reaktorov novogo pokoleniya (Teplofizika–2016)" [Proc. Sci. Tech. Conf. "Thermal Physics of Reactors of the New Generation (Thermal Physics–2016)"]. Obninsk, 2016.
UDC 621.039.51
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2017, issue 2, 2:13