Authors & Affiliations
Lavrova O.V., Ivanov K.D., Salaev S.V., Askhadullin R.Sh., Legkikh A.Yu.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Lavrova O.V. – Senior Researcher, A.I. Leypunsky Institute for Physics and Power Engineering.
Ivanov K.D. – Leading Researcher, Dr. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering.
Salaev S.V. – Chief Specialist, State Corporation “ROSATOM”, Innovation Management Unit.
Askhadullin R.Sh. – Deputy Director for Science and Technologies, Cand. Sci. (Tech.), PCTD, A.I. Leypunsky Institute for Physics and Power Engineering.
Legkikh A.Yu. – Senior Researcher, Cand. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering. Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7(484) 399-46-56; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Abstract
Consideration is given to physical and chemical processes in the lead coolant that circulates in the reactor primary circuit. Oxygen distribution in the circulation circuit and temperature zones is shown to depend on the ratio of the oxygen supply rate from the coolant to the rate of its removal from the coolant as a result of structural steel surface oxidation reaction. With the increased oxygen concentration in the coolant (C0≥1·10-6%mass), the rate of its removal from the coolant is insignificant and iso-concentration distribution is in place. When oxygen concentration goes down, the iron equilibrium activity significantly increases, both in the iron oxide produced and in the coolant, thus resulting in a significant deviation from the oxygen iso-concentration distribution on the cooling line. When the coolant is cooled the solid phase of nonstoichiometric magnetite Fe3+δO4 is formed. Value of δ is a function of temperature and oxidation potential of external environment. The value can change in limits from 1 (at the temperature of a hot zone) till 0 (when the temperature is decreased). Formating oxides on the base of iron possess a stablility in synthesis conditions only and it is decomposed on stable phases when the temperature decrease: iron and stoichiometric magnetite with releasing of the oxygen in the external environment, that is in the coolant, up to saturation at the temperature of a cold zone.
Keywords
lead, coolant, oxygen, structural steel, iron, oxidation, thermodynamic activity, experiment, circulation, temperature distribution, oxygen distribution
Article Text (PDF, in Russian)
References
1. Blokhin V.A., Budylov Ye.G., Velikanovich R.I., Gorelov I.N., Deryugin A.N., Ievleva Zh.I., Kozina M.I., Musikhin Yu.A., Ponimash I.D., Sorokin A.D., Shimkevich A.L., Shmatko B.A., Shcherbakov E.G. Opyt sozdaniya i ekspluatatsii tverdoelektrolitnykh aktivometrov kisloroda v teplonositele svinets-vismut [The Experience of Creation and Operation of Electrolyte Oxygen Activometer in Lead-Bismuth Coolant]. Trudy konferentsii “Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh” [Proc. Conf. “Heavy Liquid Metal Coolants in Nuclear Technologies”]. Obninsk, 1999, vol. 2, pp. 631.
2. Gulevsky V.A., Martynov P.N., Orlov Yu.I., Chernov M.E. Perspektivnye metody kontrolya sostoyaniya tyazhelykh teplonositeley [Advanced Methods of Heavy Coolant Condition Monitoring]. Trudy Mezhotraslevoy konferentsii "Teplomassoperenos i svoystva zhidkikh metallov" [Proc. Interindustry Conf. "Heat and Mass Transfer and Properties of Liquid Metals"]. Obninsk, 2002, vol. 1, pp. 190.
3. Shmatko B.A. Kontrol' i regulirovanie okislitel'nogo potentsiala teplonositelya svinets-vismut v tsirkulyatsionnykh konturakh. Dis. dok. tekh. nauk [Lead-Bismuth Coolant Oxidation Potential Monitoring and Control in Circulation Circuits. Dr. tech. sci. diss.]. Obninsk, 1983.
4. Alekseev V.V., Orlova E.A., Kozlov F.A., Torbenkova I.Yu. Modelirovanie protsessov massoperenosa i korrozii staley v yadernykh energeticheskikh ustanovkakh so svintsovym teplonositelem. Chast' 1 [Simulation of Mass Transfer and Steel Corrosion Processes in Nuclear Power Plants with Lead Coolant. Part 1]. Obninsk, 2008. 22 p.
5. Gulevskiy V.A. Obobshchenie rezul'tatov eksperimental'nykh issledovaniy povedeniya primesi kisloroda v tsirkulyatsionnykh konturakh s tyazhelymi teplonositelyami [Summary of the Results of the Experimental Research into Oxygen Impurity Behavior in Circulation Circuits with Heavy Coolants]. Trudy Mezhotraslevoy konferentsii “Teplomassoperenos i svoystva zhidkikh metallov” [Proc. Interindustry Conf. “Heat and Mass Transfer and Properties of Liquid Metals”]. Obninsk, 2002, vol. 1, pp. 163.
6. Gulevskiy V.A., Orlov Yu.I., Efanov A.D. Gidrodinamicheskie problemy tekhnologii TZhMT v RU petlevoy i monoblochnoy konstruktsiy [Hydrodynamic Problems of HLMC Technology in Loop and Pool-Type Reactors]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2008, no. 4, pp. 15-33.
7. Lavrova O.V., Legkikh A.Yu., Storozhenko A.N. Termodinamicheskie aspekty protsessa okisleniya metallicheskikh primesey i poverkhnostey staley v rasplavakh tyazhelykh zhidkikh metallov [Thermodynamic Aspects of Oxidation of Metallic Impurities and Steel Surfaces in Heavy Liquid Metal Melts]. Izvestiya vuzov. Yadernaya energetika - Proseedings of Universities. Nuclear Power Engineering, 2016, no. 4, pp. 102–113.
8. Ivanov K.D., Lavrova O.V., Salaev S.V. Ispol'zovanie razrabotannoy metodiki vykhoda metallicheskikh komponentov iz stali dlya izucheniya korrozionnoy stoykosti etikh staley v tyazhelykh teplonositelyakh [The Use of the Developed Method of Metallic Components Release from Steel in Order to Study Corrosion Resistance of These Steels in Heavy Coolants]. Trudy konferentsii “Teplogidravlicheskie aspekty bezopasnosti YaEU s reaktorami na bystrykh neytronakh” [Proc. Conf. “Thermal Hydraulic Safety Aspects of NPPs with Fast Reactors”]. Obninsk, 2005, pp. 117.
9. Kulikov I.S. Termodinamika oksidov [Thermodynamics of Oxides]. Moscow, Metallurgy Publ., 1986. 344 p.
10. Glushko V.P. Termodinamicheskie konstanty veshchestv [Thernodynamic Constansts of Matters]. ?oscow, VINITI Publ., 1965–1979, vol. I-X;
Glushko V.P.
Termodinamicheskie konstanty individual'nykh veshchestv
[Thernodynamic Constansts of Individual Matters]. ?oscow, Nauka Publ., 1978–1982, vol. I-IV.
11. Ivanov K.D., Martynov P.N. Opyt resheniya voprosov tekhnologii svinets-vismutovogo teplonositelya pri ekspluatatsii APL vtorogo pokoleniya [The Experience in Solution of Problems of Lead-Bismuth Coolant Technology during Second Generation Nuclear Submarines Operation]. Trudy konferentsii “Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh” [Proc. Conf. “Heavy Liquid Metal Coolants in Nuclear Technologies”]. Obninsk, 1999, vol. 2, pp. 709.