Bondarenko A.I., Savin M.M, Supotnitskaya O.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The article presented contains an analytical survey of problems emerged at construction and program realization of numerical algorithms of the Smoluchowski equation applied for a description of coagulation and coalescence processes in the disperse systems. It is indicated the reason of the problems can be assumptions about medium homogeneity, instantaneous mixing and interaction of particles being at arbitrary distant from each other. The other reason can concern a construction of a coagulation kernel for any specific case. A single-component disperse system is taken as an example to discuss capabilities for evasion of the problems emerged. A method of four-node function distribution of two-dimensional computational mesh is proposed for a two-component disperse system. Application of one-dimensional approximation for solving coagulation equation of a multicomponent disperse system is also discussed.
1. Voloschuk V.M., Sedunov Yu.S. Protsessy koagulyatsii v dispersnykh sistemakh [Coagulation processes in disperse systems]. Leningrad, Gidrometeoizdat Publ., 1975. 320 p.
2. Lushnikov A.A. Nekotorye novye aspekty teorii koagulyacii [Some new aspects of the theory of coagulation]. Izv. AN SSSR. Seriya Fizika atmosfery i okeana - Proceedings of the USSR Academy of Sciences. Series Physics of Atmosphere and Ocean, 1978, vol. 14, no. 10, pp. 1046-1055.
3. Kovetz A., Olund B. The Effect of Coalescence and Condensation on Rain Formation in a Cloud of Finite Vertical Extent. Journal of the Atmospheric Sciences, 1969, no. 26, pp.1060–1065.
4. Shterenberg A.M., Filippov D.A. Modelirovanie processov koagulyacii na osnove primeneniya sistem kineticheskih differencialnyh nelineynyh uravneniy [Modeling of coagulation processes based on the application of systems of kinetic differential nonlinear equations]. Vestnik SamGTU. Seriya Fiziko-matematicheskie nauki – Bulletin of SamSTU. Series Physics and mathematics, 2006, no. 42,
pp. 207-209.
5. Prakash A., Bapat A.P., Zachariah M.R. A Simple Numerical Algorithm and Software for Solution of Nucleation, Surface Growth, and Coagulation Problems. Aerosol Science and Technology, 2003, no. 37, pp. 892–898.
6. Jacobson M.Z., Turco R.P., Jensen E.J., Toon O.B. Modeling coagulation among particles of different composition and size. Atmospheric Environment, 1994, no. 28A, pp. 1327–1338.
7. Jacobson M.Z. Fundamentals of atmospheric modeling. Second edition. Cambridge, Cambridge university press, 2005. 813 p.
8. Stankova E.N., Zatevakhin M.A. The modified Kovetz and Olund method for the numerical solution of stochastic coalescence equation. Proc. 12th Int. Conf. on Clouds and Precipitation. Zurich, 1996, pp. 921–923.
9. Zatevahin M.A., Ignat'ev A.A., Ramaroson R., Govorkova V.A. Chislennoe issledovanie processa koagulyacii aerozolnyh chastic v turbulentnom pogranichnom sloe atmosfery [Numerical study of the process of coagulation of aerosol particles in the turbulent boundary layer of the atmosphere]. Trudy glavnoy geofizicheskoy observatorii im. A.I. Voeykova - Proceedings of the main geophysical observatory A.I. Voyeikov, 2009, no. 559, pp.161-191.
10. Ivkov M., Zatevakhin M.A., Bezlepkin V.V., Semashko S.E., Ignatiev A.A. Investigation of aerosol kinetics in the protective envelope when analyzing accidental emissions at nuclear plants. Atomic Energy, 2010, vol. 109, no. 1, pp. 52-56.
11. Piskunov V.N. Teoreticheskie modeli kinetiki formirovaniya aerozoley [Theoretical models of kinetics of aerosol formation]. Sarov, RFYAC VNIIEF Publ., 2000. 209 p.
12. Warren D., Seinfeld J. Simulation of Aerosol Size Distribution Evolution in Systems with Simultaneous Nucleation, Condensation, and Coagulation. Aerosol Science and Technology, 1985, vol. 4, no. 1, pp. 31-43.
13. Gelbard F., Seinfeld J. Simulation of Multicomponent Aerosol Dynamics. Journal of Colloid and Interface Science, 1980, vol. 78, no. 2, pp. 485-501.
14. Gelbard F., Tambour Y., Seinfeld J. Sectional Representations for Simulating Aerosol Dynamics. Journal of Colloid and Interface Science, 1980, vol. 76, no. 2, pp. 541-556.
15. Gelbard F., Seinfeld J. Coagulation and Growth of a Multicomponent Aerosol. Journal of Colloid and Interface Science, 1978, vol. 63, no. 3, pp. 472-479.
16. Katoshevski D., Seinfeld J. Analytical-Numerical Solution of the Multicomponent Aerosol General Dynamic Equation with Coagulation. Aerosol Science and Technology, 1997, vol. 27, no. 4, pp. 550-556.
17. Kim Y., Seinfeld J. Simulation of multicomponent aerosol coagulation by the moving sectional method. Journal of Colloid and Interface Science, 1990, vol. 135, no. 1, pp. 185-199.
18. Jacobson M. Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution and reversible chemistry among multiple size distributions. Journal of Geophysical Research, 2002, vol. 107, no. D19, pp. 4366.
19. Jacobson M., Turco R. Simulating condensational growth, evaporation and coagulation of aerosol using a combined moving and stationary size grid. Aerosol Science and Technology, 1995, vol. 22, pp. 73-92.
20. Arabas S., Pawlowski H. Adaptive method of lines for multi-component aerosol condensational growth and CCN activation. Geoscientific Model Development, 2011, vol. 4, pp. 15-31.
21. Korhonen H., Lehtinen K., Kulmala M. Multicomponent aerosol dynamics model UHMA: model development and validation. Atmos. Chem. Phys. Discuss., 2004, vol. 4, pp. 471-506.
22. Koziol A.S., Leighton H. The moments method for multi-modal multi-component aerosols as applied to the coagulation-type equation. Quarterly Journal of the Royal Meteorological Society, 2007, vol. 133, pp. 1057-1070.
23. Efendiev Y., Zachariah M. A model of two-component aerosol coagulation and phase separation: a method for changing the growth rate of nanoparticles. Chemical Engineering Science, 2001, vol. 56, pp. 5763-5769.
24. Efendiev Y. Modeling and simulation of multi-component aerosol dynamics. Computational and Applied Mathematics, 2004, vol. 23, no. 2-3, pp. 401-423.
25. Sun Z., Axelbaum R., Huertas J. Monte Carlo Simulation of Multicomponent Aerosol Undergoing Simultaneous Coagulation and Condensation. Aerosol Science and Technology, 2011, vol. 38, no. 10, pp. 963-971.
26. Lawrenzi I., Bartels J., Diamond S. A General Algorithm for Exact Simulation of Multicomponent Aggregation Processes. Journal of Computational Physics, 2002, vol. 177, pp. 418-449.
27. Geethpriya Palaniswaamy. DSMC Multicomponent Aerosol Dynamics: Sampling Algorithms and Aerosol Processes: A dissertation presented to the Faculty of the Graduate School at the University of Missouri. Columbia, 2007.