Pryanichnikov A.A.1, Simakov A.S.1, Degtyarev I.I.2, Novoskoltsev F.N.2, Altukhova E.V.2, Altukhov Yu.V.2, Sinyukov R.Yu.2
1. P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Protvino, Russia
2. Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino, Russia
Lately, beams of heavy charged particles, e.g., protons and carbon ions, have found wide application in radiation therapy of oncological diseases owing to the fundamental possibility of qualitative improvement of the spatial dose distributions when compared to sources of electrons and γ-rays conventionally used in radiation therapy, which makes it possible to radically decrease the radiation absorbed dose of the undamaged regions of the tissue adjacent to a tumor. In this paper, we report a result of theoretical and experimental studies of the method for real-time monitoring of the Bragg peak position in a water phantom during scanned proton pencil-beam irradiation. This method is based on the detection of the prompt γ-rays emitted orthogonally to the beam direction produced as a result of inelastic nuclear interactions of primary particles. The principal parameters of clinical setup prototype, the accuracy of determining the longitudinal coordinates of the Bragg peak position, the choice of the optimal type of scintillator, and characteristics of data acquisition system were found on the basis of statistical simulation using the RTS&T Monte Carlo multi-particle transport code for realistic 3D setup model using of a slit collimator.
1. Min C.-H., Kim C.H., Youn M.-Y., Kim J.-W. Prompt gamma measurements for locating the dose falloff region in the proton therapy. Applied Physics Letters, 2006, vol. 89, pp. 183517.
2. Testa E., Bajard M., Chevallier M., Dauvergne D., Le Foulher F., Freud N., Létang J.M., Poizata J.C., Ray C., Testa M. Dose profile monitoring with carbon ions by means of prompt-gamma measurements. Nuclear Instruments and Methods, 2009, vol. 267, pp. 993-996.
3. Richter C., Pausch G., Barczyk S., Priegnitz M., Keitz I., Thiele Ju., Smeets Ju., Stappen F.V., Bombelli L., Fiorini C., Hotoiu L., Perali I., Prieels D., Enghardt W., Baumann M. First clinical application of a prompt gamma based in vivo proton range verification system. Radiotherapy&Oncology, 2016, vol. 118, no. 2, pp. 232–237.
4. Blokhin A.I., Degtyarev I.I., Lokhovitskii A.E., Maslov M.A., Yazynin I.A. RTS&T Monte Carlo Code (Facilities and Computation Methods). Proc. SARE-3 Workshop, KEK. Tsukuba, Japan, 1997.
5. Degtyarev I.I., Lyashenko O.A., Lokhovitskiy A.E., Yazynin I.A., Belyakov-Bodin V.I., Blokhin A.I. Opisanie modelirovaniya protsessov perenosa i geometrii v programme RTS&T [Verification benchmark calculations in low and medium energy regions using RTS&T code]. Voprosy atomnoy nauki i tekhniki. Seriya: Yadernye konstanty - Problems of atomic science and technology. Series: Nuclear Constants, 1999, no. 2, pp. 125-135.
6. Degtyarev I.I., Liashenko O.A., Yazynin I.A., Blokhin A.I., Belyakov-Bodin V.I. Simulation of Relativistic Hadronic Interactions in the Framework of the RTS&T-2004 Code. Proc. Conf. RuPAC XIX. Dubna, 2004.
7. Belyakov-Bodin V.I., Degtyarev I.I., Niita K., Bolotskya V.P., Katinova Yu.V., Nozdracheva V.N., YasudacH. Calorimetric-time-of-flight technique for determination of energy spectra of particles from a high intensity pulsed proton target. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, vol. 465, no. 2-3, pp. 346-353. doi.org/10.1016/S0168-9002(01)00692-1
8. Degtyarev I.I., Novoskoltsev F.N., Liashenko O.A., Gulina E.V., Morozova L.V. The RTS&T-2014 code status. Nuclear Energy and Technology, 2015, vol. 1, no. 3, pp. 222-225.
9. Cullen D.E. The 1996 ENDF/B Pre-Processing Codes. IAEA, Vienna, Austria, IAEA-NDS-39, Rev. 9, November, 1996.
10. Niita K., Chiba S., Maruyama T., Maruyama T., Takada H., Fukahori T., Nakahara Ya., Iwamoto A. Analysis of the (N,xN') reactions by quantum molecular dynamics plus statistical decay model. Physical Review C, 1995, vol. 52, no.4, pp. 2620. doi: https://doi.org/10.1103/PhysRevC.52.2620
11. Salvat F., Fernández-Varea J.M., Sempau J. PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron and Photon Transport. Proc. Workshop. Barcelona, Spain, 2008.
12. Butson M.J., Cheung T., Yu P.K.N. Absorption spectra variations of EBT radiochromic film from radiation exposure. Physics in Medicine & Biology, 2005, vol. 50, no. 13, N135-40.
13. ISP. GAFCHROMIC®EBT2 Self-developing film for radiotherapy dosimetry, (2009). Available at: http://www.gafchromic.com/ (accessed 23.09.09).
14. Butson M.J., Cheung T., Yu P.K.N., Alnawaf H. Dose and absorption spectra response of EBT2 Gafchromic film to high energy x-rays. Australasian College of Physical Scientists and Engineers in Medicine, 2009, vol. 32, no. 4, pp. 196–202.
15. Martisikova M., Jakel O. Dosimetric properties of Gagchromic®EBT films in medical carbon ion beams. Physics in Medicine & Biology, 2010, vol. 55, pp. 5557-5567.
16. Brons S. et al. The role of nuclear reactions in Monte Carlo calculations of absorbed and biological effective dose distributions in hadron therapy. Proc. 12th Int. Conf. on Nuclear Reaction Mechanisms. VillaVilla Monastero, Varenna, Italy, 2009, pp. 517-525.
17. Le Foulher F., Bajard M., Chevallier M., Dauvergne D., Freud N., Henriquet P., Karkar S., Létang J.M., Lestand L., Plescak R., Ray C., Schardt D., Testa E., Testa M. Monte Carlo simulations of prompt-gamma emission during carbon ion irradiation, in2p3-00480024, version 1-3 May 2010.
18. Polf J. C., Peterson S., Ciangaru G., Gillin M., Beddar S. Measurement and calculation of characteristic prompt gamma ray spectra during proton irradiation. Physics in Medicine & Biology, 2009, vol. 54, pp. N519-527.