Sakhipgareev A.R., Morozov A.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The results of an analysis of the experimental data on the effect of contact condensation of the steam-gas mixture on the operation of NPP passive safety systems with WWER and the steam generator in emergency condensing mode is considered in the article. The subcooled liquid supplied to the steam volume of the hydro accumulators can be used to increase the operating time of the WWER steam generator in the condensing mode therefore to provide the long-term cooling of the core in case of an accident. A characteristic feature of the studied processes is the low liquid outflow velocity (less than 1 m/sec), necessitated to provide a passive mode of safety systems operation.
The experiments were performed on the test facility with the working section "Condensation on the jets" with the parameters specific to the primary circuit of the reactor facility in 24 hours after the accident initiation, and different concentrations of the gas in the steam-gas mixture. It was established that the increase of the concentration of the nitrogen in the steam-nitrogen mixture in the volume the HA-2 model up to 60% reduce to a decrease the heat transfer coefficient to ~35 %.
The obtained data can be used for the numerical simulation of emergency processes in the WWER reactor facility during operation of the passive safety systems (the HA-2 system, passive heat removal system), with regard to the removal of the steam-gas mixture from the tube bundle of the steam generator by reducing of the pressure in the hydro accumulators of passive core flooding system by a supply of the subcooled liquid into their volume.
1. Kalyakin S.G., Sorokin A.P., Pivovarov V.A., Pomet'ko R.S., Selivanov Yu.F., Morozov A.V., Remizov O.V. Eksperimental'nye issledovaniya teplofizicheskikh protsessov v obosnovanie bezopasnosti VVER novogo pokoleniya [Experimental studies of the thermophysical processes in justification of the safety of the new generation of VVER]. Atomnaya energiya - Atomic Energy, 2014, vol. 116, no. 4, pp. 241-246.
2. Obschie dannye ob AES Akkuju [General information about Akkuyu NPP]. Available at: http://www.akkunpp.com/aes (accessed 22.01.2018).
3. Morozov A.V. Teplogidravlicheskoe obosnovanie rabotosposobnosti sistemy passivnogo zaliva aktivnoj zony reaktora VVER. Diss. kand. tekhn. nauk [Thermohydraulic substantiation of the operation of passive core flooding system of the VVER reactor. Cand. tech. sci. diss.]. Obninsk. 2004. 159 p.
4. Morozov A.V., Remizov O.V. Eksperimental'noe obosnovanie proektnykh funktsij dopolnitel'noj sis-temy passivnogo zaliva aktivnoj zony reaktora VVER [Experimental substantiation of the design features of passive core flooding system of the VVER reactor]. Teploenergetika - Thermal Engineering, 2012, no. 5, pp. 22-27.
5. Luk'yanov A.A., Zajtsev A.A., Morozov A.V., Popova T.V., Remizov O.V., Tsyganok A.A., Kalyakin D.S. Raschetno-eksperimental'noe issledovanie vliyaniya nekondensiruyuschihsya gazov na rabotu modeli parogeneratora VVER v kondensacionnom rezhime pri zaproektnoj avarii [Numerical and experimental investigation of the effect of non-condensable gases on the VVER steam generator model operation in condensing mode during beyond design basis accident]. Izvestiya vuzov. Yadernaya energetika - Proseedings of Universities. Nuclear Power Engineering, 2010, no. 4, pp. 172-182.
6. Maltsev M. Additional information on modern VVER Gen III technology. Proc. OECD/NEA Workshop on Innovations in Water-cooled Reactor Technologies. Paris, France, 2015.
7. Berkovich V.M., Taranov G.S., Kalyakin S.G., Remizov O.V., Morozov A.V. Razrabotka i obosnovanie tekhnologii udaleniya nekondensiruyuschikhsya gazov dlya obespecheniya rabotosposobnosti sistemy passivnogo otvoda tepla [The development and substantiation of technology of removal of non-condensable gases to ensure of the operation passive heat removal system]. Atomnaya energiya - Atomic Energy, 2006, vol. 100, no. 1, pp. 13-19.
8. Morozov A.V., Remizov O.V., Tsyganok A.A. Non-condensable gases effect on steam condensation heat transfer in horizontal tube bundle. Transactions of the American Nuclear Society 2010 ANS Annual Meeting and Embedded Topical Meetings. San Diego, CA, USA, 2010, pp. 676–677.
9. Kopytov I.I., Kalyakin S.G., Berkovich V.M., Morozov A.V., Remizov O.V. Experimental investigation of non-condensable gases effect on Novovoronezh NPP-2 steam generator condensation power under the condition of passive safety systems operation. Proc. 17th Int. Conf. on Nuclear Engineering, ICONE17. Brussels, 2009.
10. Morozov A.V., Sakhipgareev A.R. Eksperimental'naya otsenka vliyaniya kontaktnoj kondensatsii parogazovoj smesi na rabotu passivnykh sistem bezopasnosti VVER [Experimental estimation of the effect of contact condensation of steam-gas mixture on the VVER passive safety systems operation]. Izvestiya vuzov. Yadernaya energetika - Proseedings of Universities. Nuclear Power Engineering, 2017, no. 1, pp. 17-28.
11. Eroshkina E.V., Kisina V.I., Shvarts A.L., Kolbasnikov A.V. Experimental investigation of heat transfer during condensation of steam from a steam–water mixture on cold water jets at high pressure. Thermal Engineering, 2007, vol. 54, no. 1, pp. 55-60.
12. Porcheron E., Lemaitre P., Nuboer A., Roshas V., Vendel J. Experimental investigation in the TOS-QAN facility of heat and mass transfers in a spray for containment application. Nuclear Engineering and Design, 2007, vol. 237, pp. 1862–1871.
13. Morozov A.V., Sakhipgareev A.R. Issledovanie vliyaniya protsessov kondensatsii para iz parogazovoj smesi na strue zhidkosti na rabotu parogeneratora VVER v kondensatsionnom rezhime [Study of the effect of steam condensation from the steam-gas mixture on the liquid jet on VVER steam generator operation in condensation mode]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty - Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constans, 2016, no. 3, pp. 100-110.
14. Berkovich V.M., Peresadko V.G., Taranov G.S., Remizov O.V., Morozov A.V., Tsyganok A.A., Kalyakin D.S. Experimental study on Novovoronezh NPP-2 steam generator model condensation power in the event of the beyond design basis accident. Proc. Int. Congress on Advances in Nuclear Power Plants 2010, ICAPP 2010. San Diego, CA, 2010, pp. 186–192.
15. Kutateladze S.S. Teploperedacha pri kondensacii i kipenii [Heat transfer in the condensation and boiling]. Moscow, Mashgiz Publ., 1952. 234 p.
16. Kutateladze S.S. Teploperedacha i gidrodinamicheskoe soprotivlenie [Heat transfer and hydrodynamic resistance]. Moscow, Energoatomizdat Publ., 1990. 367 p.
17. Morozov A.V., Sakhipgareev A.R. Obobschenie opytnykh dannykh po teploobmenu pri kondensatsii parogazovoj smesi na strue zhidkosti pri rabote parogeneratora VVER v avarijnom rezhime [Analysis of the experimental data on the heat transfer at condensation of steam-gas mixture on the liquid jet during operation of the VVER steam generator in emergency mode]. Proc. 19th Annual Conf. of Young Specialists in Nuclear Power Plants. Podolsk, 2017, pp. 320-329.
18. Isachenko V.P. Teploobmen pri kondensatsii [Heat transfer in the condensation]. Moscow, Energiya Publ., 1977. 240 p.
19. 19. Berman L.D., Gordon B.G., Bogdan S.N. Teplootdacha ot parovozdushnoj smesi k dispergirovannoj vodyanoj strue v ogranichennom ob''yome [Heat transfer from the steam-air mixture to the dispersed water jet in a limited volume]. Teploenergetika - Thermal Engineering, 1981, no. 12, pp. 38-42.
20. Prandtl' L. Gidroaeromekhanika [Aerohydromechanics]. Izhevsk, NITS "Regulyarnaya i khaoticheskaya dinamika" Publ., 2000. 576 p.