Gordeev S.S.1, Sorokin A.P.2, Denisova N.A.2
1 National Research Nuclear University “MEPhI”, Moscow, Russia
2 A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The temperature regime of the core of fast neutron reactors close to the limiting one, the influence of a mass of factors, high demands on the thermophysical justification. The main factors are the distribution of geometric parameters, energy release, coolant flow, interchannel and inter-packet exchange intensity, uncertainty in the values of these parameters and their variation during reactor operation. Formation of the core during the campaign is complex. Along with systematic deviations of parameters, random deviations of parameters are observed. The available data allow us to describe the distribution of geometric parameters in the shape-modified fuel assemblies. To reduce the level and equalize the temperature unevenness, it is necessary to optimize the parameters of the peripheral zone. The deformation of the displacers determines the temperature conditions of the peripheral fuel rods, which are close to the case of the geometry of a compact beam. Formation of fuel rods and fuel bundles during the campaign can be one of the most significant factors in the formation of the temperature field in fuel assemblies. Typical, including significant deformations of fuel assemblies in the process of the campaign in the core center area do not, as a rule, lead to an increase in the level fuel cladding temperature above 650°C, maximum azimuthal uneven fuel rod temperature above 100°C. Uneven energy release of fuel rods in the cross-section of fuel assemblies leads, as a rule, to an increase in the level of maximum fuel rod temperature and maximum azimuthal unevenness in the temperature of the fuel rods. Interpacket leakage of the coolant and inter-packet heat transfer cause a change in the temperature regime of peripheral fuel rods. Influence of the whole factors leads to overheating of the fuel cladding by 10–20 % of the heating of the coolant in the fuel assembly for nominal conditions and up to 50–100 % of the heating of the coolant in the fuel assembly for changes in fuel assemblies, which requires thermomechanical calculations. A significant factor in the formation of temperature fields in fuel assemblies is the interchannel exchange. The thermophysical justification of the operation modes of fuel assemblies of the reactor core on fast neutrons with a sodium coolant should be carried out taking into account changes in various parameters, primarily the formation of fuel assemblies during the campaign.
1. Asmolov V.G., Zrodnikov A.V., Solonin M.I. Innovatsionnoye razvitiye yadernoy energetiki Rossii [Innovative development of nuclear energy in Russia]. Atomnaya energiya – Atomic energy, 2007, vol. 103, no. 3, pp. 147-155.
2. Goverdovskiy A.A., Kalyakin S.G., Rachkov V.I. Al'ternativnyye strategii razvitiya yadernoy energetiki v XXI veke [Alternative strategies for the development of nuclear power in the XXI century]. Teploenergetika - Thermal Engineering, 2014, no. 5, pp. 3–10.
3. Ponomarev-Stepnoy N.N. Dvukhkomponentnaya yadernaya energeticheskaya sistema s zamknutym yadernym toplivnym tsiklom na osnove BN i VVER [A two-component nuclear power system with a closed nuclear fuel cycle based on FR and VVER]. Atomnaya energiya – Atomic energy, 2016, vol. 120, no. 4, pp. 183–191.
4. Berhard A., Van Dorssebaere J.P., Durance S.P. Experimental Validation of the Harmonic Code. Predictions and Experience of Core Distortion Behavior. Wilmslow. England. National Nuclear Corporated Limited, 1984, no. 3/2, p. 17.
5. Barnes W.D. A Review of the U.K. Core Mechanics Experimental Programme. Predictions and Experience of Core Distortion Behavior. Wilmslow. England. National Nuclear Corporated Limited, 1984, no 3/1, pp. 16.
6. Liebe R., Will H., Zehlein H. Mechanical Response of LMPBR Core Under Transient Pressure Loading. Transactions of the American Nuclear Society, 1984, vol. 46, pp. 539-542.
7. Liebe R. Subassembly Experiments and A Computer Code to Analyze the Dynamic Code Deformation During Local Failure Propagation. Nuclear Engineering and Design, 1977, vol. 43, no. 3, pp. 353-371.
8. Bentel H., Liebe R., Will H., et. al. Transient Deformation of LMFBR Cores due to Local Failure: Experimental and Theoretical Investigation. Nuclear Engineering and Design, 1977, vol. 43, no 3, pp. 381-410.
9. Shield J.A. Bow in Experimental Breeder Reactor II Reflector Subassemblies. Nuclear Technology, 1981, vol. 52, no. 2, pp. 214-226.
10. Proshkin A.A., Likhachev YU.I., Tuzov A.N. et al. Analiz eksperimental'nykh dannykh ob izmenenii formy TVS bystrykh reaktorov [Analysis of experimental data on the change in the form of FA of fast reactors]. Atomnaya Energiya – Atomic energy, 1981, vol. 50, no. 4, pp. 13-17.
11. Parshin A.M. Struktura i radiatsionnoye raspukhaniye staley i splavov [Structure and radiation swelling of steels and alloys]. Moscow, Energoatomizdat Publ., 1983.
12. Usynin G.B., Kusmartsev Ye.V. Reaktory na bystrykh neytronakh [Fast reactors]. Moscow, Energoatomizdat Publ., 1985.
13. Dutbie J.C., Perrin R.C., Adamson J. Development and Application of the CRAMP Code for Fast Reactor Core Assessment. Predictions and Experience of Core Distortion Behavior. Wilmslow. England. National Nuclear Corporated Limited, 1984, no. 2/3, pp.8.
14. Sutherland W.H. Calculation Methods for Core Distortions and Mechanical Behavior. Predictions and Experience of Core Distortion Behavior. Wilmslow. England. National Nuclear Corporated Limited, 1984, no. 2/2, pp. 43.
15. Nakagawa M. ARKAS: A Three-Dimentional Finite Element Code for the Analysis of Core Distortions and Mechanical Behavior. Predictions and Experience of Core Distortion Behavior. Wilmslow. England. National Corporated Limited, 1984, no. 1/2, pp. 12.
16. Heinecke J. Overview of the Design of Core Restraint Systems. Predictions and Experience of Core Distortion Behavior. Wilmslow. England. National Nuclear Corporated Limited, 1984, no. 1/2, pp. 12.
17. Likhachev Yu.I., Vashlyayev Yu.N., Kravchenko I.N. Metod rascheta usiliy vzaimodeystviya i deformatsii TVS aktivnoy zony bystrogo reaktora s uchetom organov SUZ i raskholazhivaniya reaktora [Method for calculating the forces of interaction and deformation of fuel assemblies in the active zone of a fast reactor, taking into account the control system and the reactor cooling]. Preprint FEI-1087 - Preprint IPPE-1087. Obninsk, 1980.
18. Gordeyev S.S., Sorokin A.P., Tikhomirov B.B., Trufanov A.A., Denisova N.A. Metodika teplogidravlicheskogo rascheta temperaturnykh rezhimov TVS s uchetom mezhkanal'nogo peremeshivaniya teplonositelya i sluchaynogo otkloneniya parametrov v protsesse kampanii [The method of the thermal analysis of temperature conditions of fuel assemblies taking into account the average level of the coolant overheating and trace deposition of parameters during the campaign]. Atomnaya energiya – Atomic energy, 2017, vol. 122, no. 1, pp. 17-25.
19. Erbacher P.J. Cladding Tube Deformation and Core Emergency Cooling in a Loss of Coolant Accident of a Pressurized Water Reactor. Nuclear Engineering and Design, 1987, vol. 103, no 1, pp. 55-64.
20. Bagdasarov Yu.E. Tekhnicheskiye problemy reaktorov na bystrykh neytronakh [Technical problems of fast neutron reactors]. Moscow, Atomizdat Publ., 1969.
21. Uolters A., Reynol'ds A. Reaktory-razmnozhiteli na bystrykh neytronakh [Reactors-breeders on fast neutrons]. Moscow, Energoatomizdat Publ., 1986.
22. Zhukov A.V., Ushakov P.A., Sorokin A.P. et al. Metody i programmy teplogidravlicheskogo rascheta sborok tvelov bystrykh reaktorov [Methods and programs for the thermal-hydraulic calculation of fuel rod assemblies for fast reactors]. Praga, Tsentr Yadernykh Issledovaniy, 1987.
23. Buksha YU.K. Mezhdunarodnoye soveshchaniye po opytu i prognozirovaniyu povedeniya aktivnoy zony bystrykh reaktorov s uchetom formoizmeneniya TVS [International meeting on experience and forecasting the behavior of the active zone of fast reactors, taking into account the formation of fuel assemblies]. Atomnaya Energiya – Atomic energy, 1985, vol. 59, no. 6, pp. 453-455.
24. Kallnowski J.E., Banmgartner A.J. Reactor Assembly Bowing Predictions for Various Alley Classes. Transactions of the American Nuclear Society, 1981, vol. 38, no 1, pp. 301.
25. Dzhadd A. Reaktory-razmnozhiteli na bystrykh neytronakh [Reactors-breeders on fast neutrons]. Moscow, Energoatomizdat Publ., 1984.
26. Tikhomirov B.B., Poplavskiy V.M. Vliyaniye statisticheskikh kharakteristik puchka tvelov TVS na otsenku temperaturnogo rezhima aktivnoy zony bystrogo natriyevogo reaktora [Influence of statistical characteristics of the bundle of fuel assemblies on the evaluation of the temperature regime of the active zone of a fast sodium reactor]. Izvestiya vuzov. Yadernaya energetika - Proseedings of Universities. Nuclear Power Engineering, 2014, no. 2, pp. 128-139.
27. Miki K. Deformation Analysis of Fuel Pins within the Wire-Wrap Assembly of an LMFBR. Nuclear Engineering and Design, 1979, vol.52, no. 3, pp. 371-382.
28. Sha W.T., Marr W.W. Effect of Stainless-Steel Swelling on Thermal-Hydraulic Core Performance. Transactions of the American Nuclear Society, 1972, vol. 15, no 1, pp. 327-328.
29. Ohmae K., Morino A., Nakao N. et. al. Channel Deformation Analysis for Fast Reactor Fuel Assemblies Undergoing Swelling and Thermal Bowing. Nuclear Engineering and Design, 1972, vol. 23, no. 3, pp. 309-320.
30. Hishida H. Detailed Design Consideration on Wire-Spaced LMPBR Fuel Subassemblies Under the Effects of Uncertainties and Non-Nominal Geometries. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGPR/29. IAEA. Vienna. 1979, pp. 29-58.
31. Marbach J. Comportement d'un Faisceau d'aiguilles Phenix sour irradiation. Irradiation Behaviour of Mettallic Materials for Fast Reactor Gore Components. France, 1979, pp. 297-301.
32. Rousseau J., Boutard J.L., Courtois G. Deformation des Aiguilles Avec Pil Expaceur en Presence de Conflement et de Pluage D'irradiation. Irradiation Behavior of Metallic Materials for Fast Reactor Core Components. France, 1979, pp. 291-296.
33. Tikhomirov B.B., Savitskaya L.V., Poplavskiy V.M., Sorokin A.P. Modeli statisticheskogo ucheta radiatsionnogo formoizmeneniya konstruktsionnykh materialov v raschete temperaturnogo rezhima TVS bystrykh reaktorov [Models of statistical accounting for the radiative modification of structural materials in the calculation of the temperature regime of FA of fast reactors]. Trudy frantsuzsko-sovetskogo seminara "Voprosy teplogidravliki aktivnoy zony bystrykh reaktorov" [Proc. French-Soviet seminar "Problems of thermal hydraulics of the active zone of fast reactors"]. France, 1986.
34. Subbotin V.I., Ibragimov M.Kh., Ushakov P.A. et al. Gidrodinamika i teploobmen v atomnykh energeticheskikh ustanovkakh [Hydrodynamics and heat transfer in nuclear power plants]. Moscow, Atomizdat Publ., 1975.
35. Zhukov A.V., Kirillov P.L., Matyukhin N.M., Sorokin A.P., Tikhomirov B.B., Ushakov P.A., Yur'yev Yu.S., Mantlik F., Gaina J., Schmid J., Schultz W., Crete W. Teplogidravlicheskiy raschet TVS by-strykh reaktorov s zhidkometallicheskim okhlazhdeniyem [Thermohydraulic calculation of fuel assemblies for fast reactors with liquid metal cooling]. M.: Energoatomizdat, 1985.
36. Zhukov A.V., Sorokin A.P., Matyukhin N.M. Teplos’yem v aktivnykh zonakh bystrykh reaktorov [Heat in active zones of fast reactors]. Atomnaya Energiya – Atomic energy, 1986, vol. 58, no. 4, pp. 226-232.
37. Rachkov V.I., Sorokin A.P., Zhukov A.V. Teplogidravlicheskiye issledovaniya zhidko-metallicheskikh teplonositeley v yadernykh energeticheskikh ustanovkakh [Thermohydraulic studies of liquid-metal coolants in nuclear power plants]. Teplofizika vysokikh temperatur - High Temperature, 2018, no. 1, pp. 121-136.
38. Hoffmann H., Hoffmann F., Rehme K. Status of the LMFBR Thermo- and Fluid-Dynamic Activities at KFK. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna, 1979, pp. 82-106.
39. Gnadt P.A., Carbajo J.J., Dearing J.P., et. al. Sodium Boiling Experiments in the Thors Facility. Nuclear Engineering and Design, 1984, vol. 82, no. 1-3, pp. 241-280.
40. Markley R.A. Status of Core Thermo-Hydraulic Development in the USA. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna, IAEA, 1979, pp. 76-81.
41. Chiu C., Todreas N. et. al. Experimental Techniques for Liquid Metal Cooled Fast Breeder Reactor Fuel Assembly Thermal/Hydraulic Test. Nuclear Engineering and Design, 1980, vol. 62, no. 1-3, pp. 253-270.
42. Engel F.G., Minushkin B., Atkins R.J., et. al. Characterizations of Heat Transfer and Temperature Distributions in an Electrically Heated Model of an LMFBR Blanket Assembly. Nuclear Engineering and Design, 1980, vol. 62, no. 1-3, pp. 335-347.
43. Levis A.E., Wantland J.L. A Study of the Reproducibility of Data from Steady-State Tests in Simulated Liquid-Metal Fast Breeder Reactor Fuel Assemblies. Nuclear Technology, 1984, vol. 67, no. 2, pp. 132-148.
44. Mijaguchi K., Takahashi J. Thermal-Hydraulic Experiments with Simulated LMFBR Subassemblies under Nominal and Non-Nominal Operating Conditions. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna, IAEA, 1979, pp. 58-75.
45. Betts C., Mc Areavey C.G. A Review of Theoretical and Experimental Studies underlying the Thermal-Hydraulic Design of Fast Reactor Fuel Elements. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna, IAEA, 1979, pp. 7-22.
46. Khairallah A., Leteinturier D., Skok J. Status of Thermohydraulic Studies of Wire-Wrapped Bundles. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna, IAEA, 1979, pp. 23-28.
47. Menant B., Basque G., Grand D. Theoretical Analysis and Experimental Evidence of Three Types of Thermohydraulic Incohorency in Undisturbed Cluster Geometry. Thermodynamics FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna, IAEA, 1979, pp. 134-151.
48. Leteinturier D., Cartier L. Theoretical and Experimental Investigations of the Thermohydraulics of Deformed Wire-Wrapped Bundles in Nominal Flow Conditions. Thermodynamics FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna, IAEA, 1979, pp. 254-260.
49. Weber G., Cornet G. Thermohydraulic Characteristics of SNR-Fuel Elements. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IWGFR/29. Vienna, IAEA, 1979, pp. 202-215.
50. Falzetti, Meneghello S., Pezzilli M. Steady-State Thermohydraulic Studies in Seven-Pin Bundle Out-of-Pile Experiments: Nominal and Distorted Geometry Tests. Thermodynamics of FBR Fuel Subassemblies under Nominal and Non-Nominal Operating Conditions. IEGFR/29. Vienna, IAEA, 1979, pp. 261-273.
51. Mantlik F. Sovremennoye sostoyaniye voprosov dinamiki natriya v aktivnykh zonakh bystrykh reaktorov. Gidrodinamika i teploperedacha v aktivnykh zonakh i parogeneratorakh bystrykh reaktorov s natriyevym teplonositelem [Modern state of the questions of the dynamics of the nation in the active areas of promised reactors. Hydrodynamics and heat transfer in active zones and steam generators of fast reactors with sodium coolant]. Praga, CHSKAE, 1984, vol. 1, pp. 14-22.
52. Shul'ts V. Eksperimental'noye issledovaniye temperaturnykh poley v kassete bystrogo reaktora s povrezhdennoy geometriyey puchka [Experimental study of temperature fields in a fast reactor cassette with damaged beam geometry]. Praga, CHSKAE, 1984, vol. 1, pp. 159-173.
53. Gryazev V.M., Aseyev N.A., Markin S.A. et al. Raschetno-eksperimental'nyye issledovaniya teplofiziki i gidrodinamiki paketov aktivnoy zony reaktora BOR-60 [Calculation and experimental studies of thermophysics and hydrodynamics of packages of the core of the BOR-60 reactor]. Praga, CHSKAE, 1978, vol. 1, pp. 182-209.
54. Sorokin A.P., Efanov A.D., Yuriev Yu.S., Zhukov A.V., Ushakov P.A., Bogoslovskaya G.P. Methods and codes for modeling thermohydraulics of fast reactor core subassemblies under nominal and non-nominal operation conditions. LMFR core thermohydraulics: Status and prospects. Vienna, IAEA, 2000.
55. Ushakov P.A. Priblizhennoye teplovoye modelirovaniye tsilindricheskikh teplovydelyayushchikh elementov [Approximate thermal simulation of cylindrical heat-emitting elements]. Moscow, Atomizdat Publ., 1967. Pp. 137-148.
56. Zhukov A.V., Kudryavtseva L.K., Sviridenko Ye.YA. et al. Eksperimental'noye issledovaniye na modelyakh poley temperatury teplovydelyayushchikh elementov [Experimental research on models of temperature fields of fuel elements]. Moscow, Atomizdat Publ., 1967. Pp. 170-194.
57. Subbotin V.I., Ushakov P.A., Zhukov A.V. et al. Temperaturnyye polya tvelov aktivnoy zony reaktora BOR [Temperature fields of fuel elements in the core of the reactor]. Atomnaya Energiya – Atomic energy, 1970, vol. 28, no. 6, pp. 489-490.
58. Zhukov A.V., Matyukhin N.M., Sviridenko Ye.Ya. Temperaturnyye polya i teplootdacha v periferiynykh zonakh shestigrannykh kasset tvelov bystrykh reaktorov [Temperature fields and heat transfer in peripheral zones of hexagonal fuel rod cassettes of fast reactors]. Voprosy atomnoy nauki i tekhniki. Seriya: Reaktorostroyeniye - Problems of Atomic Science and Technology. Series: Reactor Construction, 1977, no. 4 (18), pp. 5-8.
59. Zhukov A.V., Kazachkovskiy O.D., Matyukhin N.M. et al. Intensifikatsiya teplomasso-obmena v TVS bystrykh reaktorov s vstrechnymi provolochnymi navivkami [Intensification of heat-mass exchange in FA of fast reactors with counter-wire wires]. Atomnaya Energiya – Atomic energy, 1985, vol. 58. no. 5, pp. 325-331.
60. Feldmann S.E., Gillette J.L., Schmitt R.C., Sha W.T. Thermal-Hydraulic Analysis of the XX07 Instrumented SBR-II Subassembly using TH13D. Transactions of the American Nuclear Society, 1975, vol. 22, no. 1, pp. 589-590.
61. Betten P.R. Comparison of XX08 Steady State Temperature Measurements with. Analytical Predictions. Transactions of the American Nuclear Society, 1978, vol. 30, no. 1, pp. 528-529.
62. Chuang M.C., Kothmann R.E., Pechersky M.J., Markley R.A. Cladding Circumpherential Hot Spot Factor for Fuel and Blanket Rods. Nuclear Engineering and Design, 1975, vol. 35, no. 1, pp. 21-28.
63. Jankus V.Z., Weeks R.W. LIFE-II-A Computer Analysis of Fast Reactor Fuel Element Behavior as a Function of Reactor Operating History. Nuclear Engineering and Design, 1972, vol. 18, no. 1, pp. 83-96.
64. Harbourne B.L., et. al. Development of CYGRO-F for Fuel Rod Behavior Analysis. Nuclear Technology, 1972, vol. 16, pp. 156.
65. Polyanin L.N. Vliyaniye perekosov energovydeleniya i neravnomernosti teploobmena na temperaturnoye pole teplovydelyayushchego sterzhnya [Influence of energy imbalance and uneven heat transfer on the temperature field of the fuel rod]. Inzhenerno-fizicheskiy zhurnal - Engineering and Physics Journal, 1973, vol. 24, no. 6, pp. 1118-1123.
66. Moreno P., Liu J., Khan E., Todreas N. Steady-State Thermal Analysis of FWR's by a Simplified Method. Transactions of the American Nuclear Society, 1977, vol. 26, no. 1, pp. 465-466.
67. Duponi J.M., Ginier R., Sallement R., Poyot J., Ratier J.L. L'Element Combustible du reactour Phenix. Peaceful Uses of Energy. Geneva, 1971, vol. 4.
68. Zhukov A.V., Matyukhin N.M., Nomofilov Ye.V. et al. Temperaturnyye polya v nestandartnykh i deformirovannykh reshetkakh tvelov bystrykh reaktorov [Temperature fields in nonstandard and deformed lattices of fuel elements of fast reactors]. Praga, CHSKAE, 1978, vol. 1, pp. 132-145.
69. Zhukov A.V., Matyukhin N.M., Sviridenko Ye.YA. Vliyaniye deformatsii reshetki na temperaturnyye polya i teplootdachu tvelov kharakternykh zon modeli kassety tvelov bystrogo reaktora [The effect of lattice deformation on the temperature fields and the heat transfer of fuel elements of the characteristic zones of the fast reactor fuel element cassette model]. Preprint FEI-979 - Preprint IPPE-979. Obninsk, 1980.
70. Zhukov A.V., Matyukhin N.M., Sviridenko Ye.Ya. Eksperimental'noye issledovaniye vliyaniya deformatsii reshetki na temperaturnyye polya periferiynykh tvelov [Experimental study of the influence of lattice deformation on the temperature fields of peripheral fuel elements]. Obninsk, IPPE Publ., 1980. Pp. 27-37.
71. Moller R., Tschoke H. Steady-State Local Temperature Fields with Turbulent Liquid Sodium Flow in Nominal and Disturbed Bundle Geometries with Spacer Grids. Nuclear Engineering and Design, 1980, vol. 62, no. 1-3, pp. 59-70.
72. Vegter B.J., Roidt R.M., Pecheraky M.S. et. al. Effect of Rod Bowing on the Subchannel Flow Rate in a Model Reactor Rod Bundle. Transactions of the American Nuclear Society, 1980, vol. 35, no. 2, pp. 585-587.
73. Carelli M.D., Bach C.W. Thermal-Hydraulic Analysis for CRBRP Core-Restraint Design. Transactions of the American Nuclear Society, 1975, vol. 21, no. 1, pp. 393-395.
74. Sha W.T., Schmitt R.C. A Model to Account for by pass-Fluid and Inter-Fuel Assembly Heat Transfer. Transactions of the American Nuclear Society, 1975, vol. 22, no. 1, pp. 575-576.
75. Ihle P. Heat Transfer on Rod Bundles with Severe Clad Deformations. Nuclear Science and Engineering, 1984, vol. 88, pp. 206-219.
76. Chang L.K. The Preduction of Temperature Distribution of a Subassembly Including Interassembly Heat Transf. Nuclear Engineering and Design, 1977, vol. 42, no. 2, pp. 223- 236.
77. Moreno P., Lin L., Khan E., et. al. Steady State Thermal Analysis of FWR's by a Simplifier Method. Transactions of the American Nuclear Society, 1977, vol. 28, no. 1, pp. 465-466.
78. Chen B.C., Todreas E. Prediction of the Coolant Temperature Field in a Breeder Reactor Including Interassembly Heat Transfer. Nuclear Engineering and Design, 1975, vol. 35, no. 3, pp. 423-440.
79. Zhukov A.V., Matyukhin N.M., Sviridenko Ye.YA. Polya temperatury v deformirovannykh reshetkakh tvelov bystrykh reaktorov s ravnomernymi i neravnomernymi teplovymi nagruzkami [Temperature fields in deformed lattices of fuel rods of fast reactors with uniform and non-uniform thermal loads]. Preprint FEI-9014 - Preprint IPPE-9014. Obninsk, 1979.