Krasin V.P., Soyustova S.I.
Moscow Polytechnic University, Moscow, Russia
Along with other liquid metals liquid lithium-tin alloys can be considered as an alternative to the use of solid plasma facing components of a future fusion reactor. Therefore, parameters characterizing both the ability to retain hydrogen isotopes and those that determine the extraction of tritium from a liquid metal can be of particular importance. The purpose of the present study is to develop the expressions for the calculation of Sieverts’ constant for hydrogen in the entire range of compositions of the binary Li-Sn system using the mathematical framework coordination-cluster model. The results of theoretical computations are compared with the previously published experimental values for two alloys of the Li-Sn system. The calculations which are carried out for temperature of 500°C have shown that the boundary concentration dividing regions of exothermic and endothermic reactions was displaced to higher values of the concentration of tin compared to what occurred at 800°C.
1. Apicella M.L., Lazarev V., Lyublinski I., Mazzitelli G., Mirnov S., Vertkov A. Lithium capillary porous system behavior as PFM in FTU tokamak experiments. Journal of Nuclear Materials, 2009, vol. 386–388, pp. 821-823.
2. Lyublinski I.E., Vertkov A.V, Zharkov M.Yu., Sevryukov O.N., Dzhumaev P.S., Shumskiy V.A., Ivannikov A.A. Selection of materials for tokamak plasma facing elements based on a liquid tin capillary pore system. Journal of Physics: Conference Series, 2016, P. 012014.
3. Loureiro J.P.S., Tabares F.L., Fernandes H., Silva C., Gomes R., Alves E., Mateus R., Pereira T., Alves H., Figueiredo H. Behavior of liquid Li-Sn alloy as plasma facing material on ISTTOKJ. Fusion Engineering and Design, 2017, vol. 117, pp. 208-211.
4. Tabares F.L., Oyarzabal E., Martin-Rojo A.B., Tafalla D., de Castro A., Medina F., Ochando M.A., Zurro B., McCarthy K. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems. Nuclear Materials and Energy, 2017, vol. 12, pp. 1368.
5. Loureiro J.P.S., Fernandes H., Tabares F.L., Mazzitelli G., Silva C., Gomes R., Alves E., Mateus R., Pereira T., Figueiredo H., Alves H. Deuterium retention in tin (Sn) and lithium–tin (Li–Sn) samples exposed to ISTTOK plasmas. Nuclear Materials and Energy, 2017, vol. 12, pp. 709.
6. Morachevskii A.G. Thermodynamic properties and electrochemical studies of lithium–tin alloys. Russian Journal of Applied Chemistry, 2015, vol. 88, pp. 1087.
7. Alblas B.P., van der Lugtt W., Dijkstra J., Geertsma W., van Dijk C. Structure of liquid Li-Sn alloys. Journal of Physics F: Metal Physics, 1983, vol. 13, pp. 2465.
8. Alblas B.P., van der Marel C., Geertsma W., Meijer J.A., van Oosten A.B., Dijkstra J., Stein P.C., van der Lugt W. Experimental results for liquid alkali-group IV alloys. Journal of Non-Crystalline Solids, 1984, vol. 61-62, no. 2, pp. 201-206.
9. Chan Y.C., Veleckis E. A thermodynamic investigation of dilute solutions of hydrogen in liquid Li-Pb alloys. Journal of Nuclear Materials, 1984, vol. 123, no. 1-3, pp. 935-940.
10. Fromm E., Gebhardt E. Gase und Kohlenstoff in Metallen. Springer-Verlag. Berlin, 1976. Pp. 747.
11. Schumacher R., Weiss A. Hydrogen solubility in the liquid alloys lithium-indium, lithium-lead, and lithium-tin. Berichte der Bunsengesellschaft fur physikalische Chemie, 1990, vol. 94, pp. 684.
12. Saboungi M.-L., Caveny D., Bloom I., Blander M. The coordination cluster theory: extension to multicomponent systems. Metallurgical and Materials Transactions A, 1987, vol. 18A, pp. 1779.
13. Krasin V.P., Soyustova S.I., Lyublinskii I.E. Coordination cluster model for calculating Sieverts’ constant of hydrogen solutions in melts of the Pb–Bi–Li system. Inorganic Materials: Applied Research, 2010, vol. 1, pp. 324.
14. Krasin V.P., Soyustova S.I. Thermodynamic analysis of chromium solubility data in liquid lithium containing nitrogen: Comparison between experimental data and computer simulation.Journal of Nuclear Materials, 2015, vol. 465, pp. 674-681.