Petrovskaya A.S.1, Kladkov A.Yu.2, Surov S.V.2, Tsyganov A.B.1
1 Spectrum-Micro Limited Liability Company, St. Petersburg, Russia
2 Science and Innovation, JSC ROSATOM, Moscow, Russia
This article proposes an innovative technology of a "dry" plasma decontamination to reduce the activity of irradiated metal constructions of nuclear power plants (NPP) and the irradiated reactor graphite. The technology being developed is based on the latest achievements of a plasma physics applications to the nuclear energy problems and covers the range of strategic fields: nuclear energy reactors operations, plasma physics applications, materials science, production of concentrated isotopes for useful purposes. Special attention is paid to the application of this technology for a solving of the global problem - irradiated reactor graphite deactivation. Also we consider the technological approaches for a fast decactivation of a nuclear power reactor during planned and unplanned stops of operation. The article describes the proposed technology of the “dry” plasma decontamination with the main technical parameters, the effectiveness of application at NPP is evaluated in comparison with the known decontamination method. Also the technical and economic indicators of the technology of the "dry" plasma decontamination is estimated in comparison with the disposal scenario of the irradiated reactor graphite without any deactivation. The technology is relevant not only for the decommissioning of the high power channel-type reactors (RBMK), but also for the operation of the water-water energetic reactor (WWER). The technical and economic analysis showed that a "dry" technology reduces the costs for the disposal and containerization by more then twice compared with the disposal of irradiated graphite without any preliminary decontamination.
1. Franco M.B., Kastner G.F., Monteiro R.P.G. Decontamination process applied to radioactive solid wastes from nuclear power plants. Proc. 4th Int. Nuclear Atlantic Conference - Innovations in Nuclear Technology for a Sustainable Future - INAC 2009. Rio de Janeiro, 2009.
2. Gurau D., Deju R. The use of chemical gel for decontamination during decommissioning of nuclear facilities. Radiation Physics and Chemistry, 2015, vol. 106, no. 1, pp. 371.
3. Tuktarov M.A., Andreeva L.A., Romenkov A.A. Konditsionirovanie reaktornogo grafita vyvodimykh iz ekspluatatsii uran-grafitovykh reaktorov dlya tseley zakhoroneniya [The conditioning of the graphite reactor of the decommissioned uranium-graphite reactors for the disposal]. Russian Atomic Community, 2016. Available at: http://www.atomic-energy.ru/articles/2016/06/08/66585 (accessed 20.10.2018).
4. Pavlyuk A.O., Kotlyarevsky S.G., Mikhaylets A.M., Bespala E.V., Izmestev A.M. Sposob pererabotki obluchennogo reactornogo grafita [Method for processing of irradiated reactor graphite]. Patent RF, no. 2580818, 2016.
5. Podruzhina T. Graphite as radioactive waste: Corrosion behavior under final repository conditions and thermal treatment. Forschungszentrum Julich in der Helmholtz-Gemeinschaft, 2004. Report no: Juel-4166, pp. 127.
6. Dmitriev S.A., Karlina O.K., Klimov V.L., Pavlova G.Yu., Yurchenko A.Yu., Yarmolenko O.A., Romenkov A.A., Sudareva N.A., Sukhovsky E.V. Sposob pererabotki otkhodov reaktornogo grafita i ustroystvo dlya ego realizatsii [Method of the recycling reactor graphite waste and device for its implementation]. Patent RF, no. 2192057, 2002.
7. Romenkov A.A., Tuktarov M.A., Karlina O.A., Yurchenko A.Yu. Sposob obrabotki obluchennogo reaktornogo grafita [The method of the processing irradiated reactor graphite]. Patent RF, no. 2546981, 2013.
8. Cleaver J., McCrory S., Smith T.E., Dunzik-Gougar M.L. Chemical Characterization and Removal of C-14 from Irradiated Graphite. Proc. WM Conference. Phoenix, Arizona, USA, 2012.
9. Fachinger J., Podruhzina T., von Lensa W. Decontamination of Nuclear Graphite by Thermal Treatment. Proc. Conf. Solutions for Graphite Waste. Manchester, 2007.
10. Mason J.B., Bradbury D. Pyrolysis and its potential use in nuclear graphite disposal. Nuclear Energy, 2000, vol. 39, no. 5, pp. 305.
11. El-Genk M.S., Tournier J.P. Development and validation of a model for the chemical kinetics of graphite oxidation. Journal of Nuclear Materials, 2011, vol. 41, pp. 193.
12. Ojovan M.I., Lee W.E., Sobolev I.A., Dmitriev S.A., Karlina O.K., Klimov V.L., Petrov C.N., Semenov C.N. Thermochemical processing using powder metal fuels of radioactive and hazardous waste. Proc. Instn Mech. Engrs Part E: J. Process Mechanical Engineering, 2004, vol. 218.
13. Fachinger J., Lensa W.V., Podruhzina T. Decontamination of nuclear graphite. Nuclear Engineering and Design, 2008, vol. 238, pp. 3086.
14. Womack R.K. Using the centrifugal method for the plasma-arc vitrification of waste. Journal of Minerals, Metals & Materials Society, 1999, vol. 51, no. 10, pp. 14.
15. Lee W.E., Ojovan M.I., Stennett M.C., Hyatt N.C. Immobilization of radioactive waste in glasses, glass composite materials and Ceramics. Advances in Applied Ceramics, 2006, vol. 105, no. 1, pp. 3.
16. LaBrier D., Dunzik-Gougar M.L. Characterization of 14C in neutron irradiated NBG-25 nuclear graphite. Journal of Nuclear Materials, 2014, vol. 448, pp.113.
17. Dunzik-Gougar M.L., Smith T.E. Removal of carbon-14 from irradiated graphite. Journal of Nuclear Materials, 2014, vol. 451, pp. 328.
18. Electric Power Research Institute. Graphite Decommissioning: Options for Graphite Treatment, Recycling, or Disposal, including a Discussion of Safety-Related Issues. EPRI Technical Report No. 1013091. March 2006.
19. Kopecky J. Atlas of Neutron Capture Cross Sections. INDC(NDS)-362. 1997. P. 369.
20. Petrovskaya A.S., Tsyganov A.B. Plazmennye metody dezaktivatsii obluchennogo reaktornogo grafita. [Plasma decontamination methods of irradiated reactor graphite]. Trudy 16 konf. molodykh uchenykh i spetsialistov “Novye materialy i tekhnologii” NITs "Kurchatovskiy institut" FGUP TsNII Konstruktsionnykh materialov "Prometey" [Proc. 16th Conf. of Young Scientists and Specialists "New Materials and Technologies" NRC "Kurchatov Institute" Central research institute of structural materials "Prometey"]. St. Petersburg, 2017.
21. Petrovskaya A.S., Tsyganov A.B., Kladkov A.Yu., Surov S.V., Stakhiv M.R., Polischuk V.A. Surface deactivation of the nuclear power plants constructions by a new plasma method. Proc. IEEE Int. Conf. on Electrical Engineering and Photonics. Saint-Petersburg, 2018.
22. Zhiglinskiy A.G., Kuchinskiy V.V. Massoperenos pri vzaimodeystvii plazmy s poverkhnost'yu [Mass transfer in the interaction of plasma with the surface]. Moscow, Energoatomizdat Publ., 1991. 208 p.
23. Berisha R. Problemy prikladnoy fiziki. Raspylenie tverdykh tel ionnoy bombardirovkoy [Problems of applied physics. Sputtering of solids by ion bombardment]. Moscow, Mir Publ., 1984. 335 p.
24. Randhawa H. Review of plasma-assisted deposition processes. Thin Solid Films, 1991, vol. 196, no. 2, pp. 329.
25. Abdelrahman M.M. Study of Plasma and Ion Beam Sputtering Processes. Journal of Physical Science and Application, 2015, vol. 5, no. 2, pp. 128.
26. Jacob W., Hopf C., Schluter M. Chemical sputtering of carbon by nitrogen ions. Applied physics letters, 2005, vol. 86, pp. 204103.
27. Hopf C., von Keudell A., Jacob W. Chemical sputtering of hydrocarbon films. Journal of applied physics, 2003, vol. 94, no. 4, pp. 2373.
28. Schluter M., Hopf C., Jacob W. Chemical sputtering of carbon by combined exposure to nitrogen ions and atomic hydrogen. New Journal of Physics, 2008, vol. 10, pp. 053037.
29. Bystrov K., Morgan T. W., Tanyeli I., Temmerman G. D., van de Sanden M. C. M. Chemical sputtering of graphite by low temperature nitrogen plasmas at various substrate temperatures and ion flux densities. Journal of Applied Physics, 2013, vol. 114, pp. 133301.
30. Tartz M., Neumann H., Leiter H., Esch J. Pyrolytic graphite and carbon-carbon sputter behaviour under xenon ion incidence. Proc. 29th Int. Electric Propulsion Conf. – IEPC. Princeton, 2005, pp. 143.
31. Ferreira C.M., Loureiro J., Ricard A. Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a low pressure argon positive column. Journal of Applied Physics, 1985, vol. 57, no. 1, pp. 82.
32. Karoulina E.V., Lebedev Y.A. Computer simulation of microwave and DC plasmas: comparative characterisation of plasmas. Journal of Physics D: Applied Physics, 1992, vol. 25, no. 3, pp. 401.
33. Borst W. L. Excitation of metastable argon and helium atoms by electron impact. Physical Review A, 1974, vol. 9, pp. 1195.
34. Ferreira C.M., Loueiro J. Electron transport parameters and excitation rates in argon. Journal of Physics D: Applied Physics, 1983, vol. 16, pp. 1611.
35. McGuire E.J. Scaled electron ionization cross sections in the Born approximation for atoms with 55 Physical Review A, 1979, vol. 20, pp. 445.
36. Rapp D., Englander-Golden P. Attachment in gases by electron impact. I. Positive ionization. Journal of Chemical Physics, 1965, vol. 43, pp. 1464.
37. Wiese W.L., Martin G.A. CRC Handbook of’ Chemistty and Physics.71st ed. CRC. Boca Raton. FL. 1990.
38. Raiser Yu.P. Fizika gazovogo razryada [Gas discharge physics]. Moscow, Science Publ., 1992. 536 p.