Osipov A.A., Ulyanov V.V., Koshelev M.M., Kharchuk S.E.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The pulsating nature of the measured parameters of the system is a fundamental property of many physical processes. For example, in liquid metals, temperature pulsations are associated, as a rule, with processes of turbulent transfer. The pulsating nature of changes in the system parameters makes it possible to obtain information on the state of the observed system. Depending on the task, this in-formation can be either additional or basic. In any case, I would like to understand the nature of the pulsations and be able to model them, which is important from both a practical and a fundamental aspect. On the practical side, pulsations are used and can be used to create correlation sensors. Despite some success in the problem of establishing quantitative relationships of the structural properties of pulsations with the transfer processes, in general, this issue is waiting to be resolved. In this paper, the correlation and structural functions of temperature pulsations in heavy liquid metals (lead, bismuth) are investigated in static and dynamic modes. It is shown that temperature pulsations in a liquid metal are associated with heat and mass transfer processes, are characterized by long correlations and can be described by fractal models both under conditions of natural convection and under conditions of forced metal movement. The effect of ejection of the hydrogen mixture into the lead-bismuth melt on the structural and correlation properties of temperature pulsations is established.
1. Kebadze B.V. Kontrol' teplogidravlicheskikh parametrov i diagnostika sostoyaniya yadernykh ener-geticheskikh ustanovok s primeneniem statisticheskikh metodov. Diss. dok. techn. nauk [Control of thermohydraulic parameters and diagnostics of the state of nuclear power plants using statistical methods. Dr. techn. sci. diss.]. Obninsk, 2007.
2. Budaev V.P., Savin S.P., Zeleny L.M. Nablyudeniya peremezhaemosti i obobshchennogo samopodobiya v turbulentnykh pogranichnykh sloyakh laboratornoy i magnitosfernoy plazmy: na puti k opredeleniyu kolichestvennykh kharakteristik perenosa [Observations of intermittency and generalized self-similarity in turbulent boundary layers of laboratory and magnetospheric plasma: on the way to determining the quantitative characteristics of transport]. Uspekhi fizicheskikh nauk - Advances in the physical sciences, 2011, vol. 181, no. 9, pp. 905-952.
3. Budaev V.P. Obobshchennaya masshtabnaya invariantnost' i log-puassonovskaya statistika turbulentnosti kraevoy plazmy v tokamake T-10 [Generalized Scale Invariance and Log-Poisson Statistics of Edge Plasma Turbulence in the T-10 Tokamak]. Fizika plazmy - Plasma Physics, 2008, vol. 34, no. 10, pp. 867-884.
4. Frick P.G. Turbulentnost': modeli i podkhody [Turbulence: models and approaches]. Perm, Perm National Research Polytechnic University Publ., 1999. 136 p.
5. Pavlov A.N., Anischenko V.S. Mul'tifraktal'nyy analiz slozhnykh signalov [Multifractal analysis of complex signals]. Uspekhi fizicheskikh nauk - Advances in the physical sciences, 2007, vol. 177, no. 8, pp. 859-876.
6. Feder E. Fraktaly [Fractals]. Moscow, Mir Publ., 1991. 254 p.
7. Budaev V.P., Savin S.P., Zeleny L.M. Nablyudeniya peremezhaemosti i obobshchennogo samopodobiya v turbulentnykh pogranichnykh sloyakh laboratornoy i magnitosfernoy plazmy: na puti k opredeleniyu kolichestvennykh kharakteristik perenosa [Observations of intermittency and generalized self-similarity in turbulent boundary layers of laboratory and magnetospheric plasma: on the way to determining the quantitative characteristics of transport]. Uspekhi fizicheskikh nauk - Advances in the physical sciences, 2011, vol. 181, no. 9, pp. 905-952.
8. Dubovikov M.M., Starchenko N.V. Ekonofizika i fraktal'nyy analiz finansovykh vremennykh ryadov [Econophysics and fractal analysis of financial time series].Uspekhi fizicheskikh nauk - Advances in the physical sciences, 2011, vol. 181, no. 7, pp. 779-786.
9. Lykov I.A., Okhotnikov S.A. Vliyanie izmeneniya funktsii Khersta na vozmozhnosti ekonomicheskogo prognozirovaniya [The impact of changes in the Hurst function on the possibility of economic forecasting]. Fundamental'nye issledovaniya - Basic Research, 2013, no. 10 (7), pp. 1539-1544.
10. Kalush Yu.A., Loginov V.M. Pokazatel' Khersta i ego skrytye svoystva. [Hurst's index and its hidden properties]. Sibirskiy zhurnal industrial'noy matematiki - Siberian Journal of Industrial Mathematics, 2002, vol. 5, no. 4(12), pp. 29-37.
11. Hurst H.E. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 1951, vol. 116, pp. 770-808.
12. Bakunin O.G. Stokhasticheskaya neustoychivost' i turbulentnyy perenos. Kharakternye masshtaby, inkrementy, koeffitsienty diffuzii [Stochastic instability and turbulent transfer. Characteristic scales, increments, diffusion coefficients]. Uspekhi fizicheskikh nauk - Advances in the physical sciences, 2015, vol. 185, no. 3, pp. 271-305.
13. Zybin K.P., Orphan V.A. Model' vytyagivayushchikhsya vikhrey i obosnovanie statisticheskikh svoystv turbulentnosti [The model of stretching vortices and the justification of the statistical properties of turbulence]. Uspekhi fizicheskikh nauk - Advances in the physical sciences,2015, vol. 185, no. 6, pp. 593-613.
14. Uchaykin V.V. Avtomodel'naya anomal'naya diffuziya i ustoychivye zakony [Automotive anomalous diffusion and stable laws]. Uspekhi fizicheskikh nauk - Advances in the physical sciences, 2003, vol. 173, no. 8, pp. 847-875.
15. Bakunin O.G. Korrelyatsionnye i perkolyatsionnye svoystva turbulentnoy diffuzii [Correlation and percolation properties of turbulent diffusion].Uspekhi fizicheskikh nauk - Advances in the physical sciences, 2011, vol. 173, no. 7, pp. 757-952.
16. Uchaikin V.V. Drobno-differentsial'naya fenomenologiya anomal'noy diffuzii kosmicheskikh luchey [Fractional differential phenomenology of anomalous diffusion of cosmic rays]. Uspekhi fizicheskikh nauk - Advances in the physical sciences, 2013, vol. 183, no. 11, pp. 1175-1222.
17. Kuleshov E.L., Grudin B.N. Spektral'naya plotnost' fraktal'nogo brounovskogo protsessa [Spectral density of the fractal Brownian process]. Avtometriya - Avtometriya, 2013, vol. 49, no. 3, pp. 18-24.