Kornienko Yu.N.
Experimental and Design Organization "GIDROPRESS", Podolsk, Russia
The wall friction, heat and mass transfer coefficients, which are the basis of 1D thermal hydraulics models of nuclear power units with VVER, are semi-empirical in nature and therefore limited both in the domain of definition and in the list of effects to be taken into account. The paper presents a generalized analytical quasi-1D (q1D) method for taking into account the 3D effects of the flow structure in these coefficients, expanding their scope for the conditions of a two-phase non-equilibrium coolant flow, in particular, such as subcooled boiling, "saddle-shaped" vapor-gas profile, the contribution of natural convection, injection (suction), and the like. This approach combines methods based on the application of generalized mass forces (V.K. Shchukin) and generalized separation of variables (A.D. Polyanin). The analytic derivation of generalized forms of Lyon type integrals is presented for the required coefficients with reflection of the contribution of non-homogeneous distributions of variables. It shows the implementation of the "correspondence principle" for asymptotic transitions to previous theories and gives examples of the application of the proposed method, including the anomalous behavior of the friction and heat transfer coefficients.
1. Shchukin V.K. Teploobmen i gidrodinamika vnutrennikh potokov v polyakh massovykh sil [Heat transfer and hydrodynamics for inner flows in mass force fields]. Moscow, Mashinostroenie Publ., 1980. 240 p.
2. Polyanin A.D., Zaitcev V.F., Zhurov A.I. Metody resheniya nelineynykh uravneniy matematicheskoy fiziki i mekhaniki [Solution methods for nonlinear equations of mathematical phusics and mecanics]. Moscow, FIZMATLIT Publ., 2005. 256 p.
3. Lyon R.N. Liquid metal heat-transfer coefficients. Chemical Engineering Progress, 1951, vol. 47, no. 2, pp. 87—97.
4. RB-040-09. Rukovodstvo po bezopasnosti. Raschetnye sootnosheniya i metodiki rascheta gidro-dinamicheskikh i teplovykh kharakteristik elementov i oborudovaniya vodookhlazhdaemykh yadernykh energeticheskikh ustanovok [Safety manual. Closure relationships and methods for calculation of hydrodynamics and heat transfer characteristics for elements and equipment of VVER]. Moscow, NTC NRS Publ., 2009. 252 p.
5. Kornienko Y.N. Parametry raspredeleniy i form-faktory v kvaziodnomernom mode-lirovanii dvu-khfaznykh neravnovesnykh potokov [Distribution parameters and form factors in quasi-one-dimensional modeling of two-phase flows]. Teploenergetika - Thermal Engineering, 2004, no. 7, pp. 53—64.
6. Schlichting G. Teoriya pogranichnogo sloya [Boundary layer theory]. Moscow, Nauka Publ., 1974. 711 p.
7. Reynolds A.J. Turbulent Flows in Engineering. London, Wiley&Sons, 1974. 327 p.
8. Petukhov B.S. Turbulentnye techeniya v inzhenernykh prilozheniyakh [Turbulent flows in engineering applications]. Moscow, Nauka Publ., 1987. 278 p.
9. Popov V.N. Teplootdacha i soprotivlenie treniya pri prodol'nom turbulentnom obtekanii plastiny gazom s peremennymi fizicheskimi svoystvami [Heat transfer and friction at axial turbulent gas along plate flow with variable physical characteristics]. Teploenergetika - Thermal Engineering, 1970, vol. 8, no. 2, pp. 333—345.
10. Kolmogorov A.N. Izbrannye trudy. Matematika i mekhanika [Selected works. Mathematica and mechanica]. Moscow, Nauka Publ., 1985. 470 p.
11. Zuber N., Findlay J.A. Srednyaya ob"emnaya kontsentratsiya faz v sistemakh s dvukhfaznym potokom [Average volumetric concentration in two-phase systems]. Teploperedacha. Seriya C - Heat Transfer. Series C, 1965, vol. 87, no. 4, pp. 29—47.
12. Kornienko Y.N. Mnogofaznye mnogomasshtabnye modeli i kody neravnovesnoy teplogidravliki dlya analizov bezopasnosti YaEU. Kratkiy obzor poslednikh dostizheniy [Multiphase multiscale models and codes for non-equilibrium thermal hydraulics for NPP safety analisis. Short review of last achievements]. Trudy nauchno-tekhnicheskoy konferentsii “Teplofizicheskie eksperimental'nye i raschetnye issledovaniya v obosnovanie kharakteristik i bezopasnosti yadernykh reaktorov na bystrykh neytronakh (Teplofizika-2012)” [Proc. Sci. and Techn. Conf. “Thermo-physical experimental and calculation investigations at substantiation of characteristics and safety for fast nuclear reactors (Thermo-physics—2012)”]. Obninsk, 2012.
13. Kornienko Y. Lyon-Type Integral Forms of Wall Friction, Heat- and Mass Transfer Closure Relationships for Non-Equilibrium Two-Phase Flows. Generalization for Annular and Rod Cluster Geometries. Proc. Int. Mechanical Engineering Congress&Exposition. IMECE2013. San Diego, Ca, USA, 2013. P. 66044.
14. Kornienko Y.N. Obobshchenie analiticheskikh integral'nykh form koeffitsientov treniya, teplo- i massoobmena dlya neravnovesnykh dvukhfaznykh potokov. Kol'tsevye kanaly i TVS [Analytical generalization of integral forms for friction and heat- and mass transfer factors of non-equilibrium two-phase flows. Annular channels and pin bundles]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2013, vol. 4, pp. 61—76.
15. Novikov I.I., Voskresensky K.D. Prikladnaya termodinamika i teploperedacha [Applied Thermo-dynamics and Heat Transfer]. Moscow, Atomizdat Publ., 1977. 352 p.
16. Kornienko Y.N. Effect of Saddle-Shape Transversal Void Fraction on Low Reynolds Number Wall Friction and Heat Transfer in Bubble Flows. Proc. of ICONE-5. Nice, France, 1997.
17. Marie J.L. Modeling of the skin friction and heat transfer in turbulent two-component bubbly flows in pipes. International Journal of Multiphase Flow, 1987, vol. 13, no. 3, pp. 309—325.
18. Avdeev A.A. Analogiya Reynol'dsa dlya nerazvitogo poverkhnostnogo kipeniya v usloviyakh vynuzhdennogo dvizheniya [Reynolds analogy for non-develop boiling in forced flow condition]. Teploenergetika - Thermal Engineering, 1982, no. 3, pp. 23—26.
19. Saha P., Zuber N. Point of net vapor generation and void fraction in subcooled boiling. Proc. 5th Int. Heat Transfer Conf. Tokyo, Japan, 1974, vol. 4, pp. 175—179.
20. Nakoryakov V.E., Kashinsky A.N., Burdukov A.P., Odnoral V.P. Local characteristics of upward gas-liquid flows. International Journal of Multiphase Flow, 1981, vol. 7, pp. 63—81.
21. Edelman Z., Elias E. Void fraction distribution in low flow rate subcooled boiling. Nuclear Engineering and Design, 1981, vol. 66, pp. 375—382.
22. Rouhani S.Z. Void measurements in the regions of subcooled and low quality boiling. Stockholm, 1966. 60 p.
23. Kirillov P.L., Lozhkin V.V., Smirnov Y.A., Sudnitcin O.A. Izmerenie lokal'nykh znacheniy istinnogo ob"emnogo parosoderzhaniya v obogrevaemoy trube metodom akusticheskogo zondirovaniya [Local vapor fraction mesurments in heated tube by accustic zond method]. Teploenergetika - Thermal Engineering, 1984, no. 11, pp. 25—27.
24. Bartolomey G.G., Mikhaylov V.N. Ental'piya nachala intensivnogo paroobrazovaniya [The beginning enthalpy of intensive vapor generation]. Teploenergetika - Thermal Engineering, 1987, no. 2, pp. 17—20.