Stepanov O.E., Kornienko Yu.N., Galkin I.Yu., Pronin A.A., Bykov M.A.
Experimental and Design Organization "GIDROPRESS", Podolsk, Russia
The problem sharp increase of viscous shear stress in vertical two-phase flow is very actual question for atomic energy. Air-water flow in vertical cylindrical channel with Reynolds numbers are 19000, 38000 and void fraction 0—33 % was considered. Radial profiles of local void fraction and liquid velocities were solved also as wall friction in bubble flow. Verification of 3D CFD-model by experimental data of local void fraction and liquid velocity profiles on channel’s area and wall friction in bubble flow regime was executed. A good simulation of effect anomaly increase of wall friction in result of bubbles concentration, velocity gradient increase near the wall and turbulence shear stresses by wall bubbles were found. The comparison calculation results founded on Armand’s correlation, the analog which using in such codes as RELAP5, KORSAR/GP, and shows that these codes could not solve this effect. These results could be used for cross-verification of as 3D, so 1D codes and improves of its thermo-hydraulic models.
1. ANSYS CFX-Solver Theory Guide, Release 15, ANSYS Inc. USA, 2013.
2. Stepanov O.E., Galkin I.Yu., Meleh S.S., Kurnosov M.M., Pronin A.A. Verification of TIGRSP code fuel on example of 19-rods assembly by using CFD-solving. The newsletter of main scientific and technical studies JSC OKB “GIDROPRESS”, 2016. Available at: http://www.gidropress.podolsk.ru/files/publication/yb-2016/autorun/info-ru.htm (accessed 24.04.2018).
3. Nakoryakov V.E., Kashinsky O.N., Burdukov A.P., Odnoral V.P. Local Characteristics of Upward Gas-Liquid Flows. International Journal of Multiphase Flow, 1981, vol. 7, pp. 63—81.
4. Liu T.J. Bubble size and entrance length effect on void development in vertical channel. International Journal of Multiphase Flow, 1993, vol. 19, no. 1, pp. 99—113.
5. Liu T.J. Investigation of the wall shear stress in vertical bubbly flow under different bubble size conditions. International Journal of Multiphase Flow, 1997, vol. 23, no. 6, pp. 1085—1109.
6. Prasser H.M., Lucas D., Krepper E., Baldauf D., et al. Stromungskarten und Modelle fur transiente Zweiphasenstromungen. Forschungszentrum, Rossendorf, Germany, 2003, pp. 183.
7. Lucas D., Krepper E., Prasser H.-M. Development of co-current air-water flow in vertical pipe. International Journal of Multiphase Flow, 2005, vol. 31, pp. 1304—1328.
8. Frank Th., Zwart P.J., Krepper E., Prasser H.-M. Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes. Nuclear Engineering and Design, 2008, vol. 238, pp. 647—659.
9. Michta E., Fu1 K., Anglart H., Angele K. Numerical predictions of bubbly two-phase flows with OpenFOAM. Proc. 14th Int. Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-14. Toronto, Ontario, Canada, 2011.
10. Varseev E.V., Kornienko Yu.N. Chislennoe issledovanie vliyaniya sedloobraznykh profiley gazo-(paro)soderzhaniy dvukhfaznykh potokov na gidrodinamicheskie parametry kanala s pomoshch'yu paketa OpenFOAM i sravnenie s eksperimentom [The Numerical study of the influence saddle-shaped profiles void fraction in two-phase flow on hydrodynamic parameters channel by OpenFOAM and comparison with experiment]. Trudy nauchno-tekhnicheskoy konferentsii “Teplofizika reaktorov novogo pokoleniya (Teplofizika-2016)” [Proc. Sci. and Techn. Conf. “Thermal physics reactor of the new generation (Thermophysics—2016)”]. Obninsk, 2016.
11. Kirilov P.L. Spravochnik po teplogidravlicheskim raschetam v yadernoy tekhnike. Tom 1. Teplog-idravlicheskie protsessy v YaEU [The Guide to thermohydraulic calculation in nucleus technology. Vol. 1. Thermohydraulic processes in NPP]. Moscow, Atomic technology Publ., 2010. 776 p.
12. Armand A.A., Nevstrueva E.I. Issledovanie mekhanizma dvukhfaznogo potoka v vertikal'noy trube [The Study of the mechanism of the two-phase flow in vertical pipe]. Izvestiya VTI - Proceedings VTI, 1950, pp. 1—8.
13. Kornienko Y.N. Obobshchenie analiticheskikh integral'nykh form koeffitsientov treniya, teplo- i massoobmena dlya neravnovesnykh dvukhfaznykh potokov. Kol'tsevye kanaly i TVS [Analytical generalization of integral forms for friction and heat- and mass transfer factors of non-equilibrium two-phase flows. Annular channels and pin bundles]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2013, vol. 4, pp. 61—76.
14. Kornienko Y.N. Effect of Saddle-Shape Transversal Void Fraction on Low Reynolds Number Wall Friction and Heat Transfer in Bubble Flows. Proc. of ICONE-5. Nice, France, 1997, pp. 2433.
15. Standart for Verification and Validation in CFD Heat Transfer. An American National Standart, (2009). Available at: www.asme.org (accessed 24.04.2018).