DOI: 10.55176/2414-1038-2019-1-263-272
Authors & Affiliations
Koscheev V.N., Peregudov A.A., Rozikhin E.V., Semenov M.Yu., Yakunin A.A.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Koscheev V.N. – Leading Research, Cand. Sci. (Phys.-Math.), A.I. Leypunsky Institute for Physics and Power Engineering. Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7(484) 399-42-65; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Peregudov A.A. – Senior Research, Cand. Sci. (Tech.), A.I. Leypunsky Institute for Physics and Power Engineering.
Rozikhin E.V. – Senior Research, A.I. Leypunsky Institute for Physics and Power Engineering.
Semenov M.Yu. – Leading Research, Cand. Sci. (Phys.-Math.), A.I. Leypunsky Institute for Physics and Power Engineering.
Yakunin A.A. – Researcher, A.I. Leypunsky Institute for Physics and Power Engineering.
Abstract
In the practice of calculating the neutron characteristics of reactor applications, the relevant employees deal with computational models of various details. At the same time, a complex situation often arises before them, connected with the need to "calculate" models of RU with a large number of physical zones (~ 50000), many of which have different temperatures. This complexity is due to the fact that the stage of preparation of nuclear data libraries is separated from the stage of their use in practical codes. For example, the code MMKC (or MCNP5) uses nuclear data libraries prepared for several "reference" temperatures.
The stage of preparing nuclear data for a new set of temperatures can be simplified. Prepare a new library of nuclear data using the makxsf code, if there are ready-made sets of nuclear data for "reference" temperatures. However, and this simplified version of the preparation of a nuclear data library for an arbitrary temperature requires considerable time.
In article a simple method of modeling nuclear data for an arbitrary temperature is proposed using proportional-temperature concentrations on the basis of data prepared once at "reference" temperatures. Proportional-temperature concentrations depend only on the concentration of the isotope, its temperature and the temperatures of neighboring "reference" values. When the temperature conditions in the calculation problem change, they can be easily recalculated.
The use of the method of proportional-temperature concentrations is demonstrated on test models. These models are typical for both fast and thermal systems.
Keywords
the neutron characteristics of reactor applications, MCNP code, MMKC code, ROSFOND2010 nuclear data library, modeling nuclear data for an arbitrary temperature, proportional-temperature concentrations method, testing method
Article Text (PDF, in Russian)
References
1. Blyskavka A.A., Zhemchugov E.V., Raskach K.F. Pilotnaya versiya programmy MMK s nepreryvnym slezheniem za energiey neytrona [The pilot version of the MMK program with continuous tracking of neutron energy]. Trudy seminara NEYTRONIKA-2012 [Proc. Workshop Neutronika-2012]. Obninsk, 2012.
2. Brown F.B., Booth T.E. et al. MCNP — A General Monte Carlo N-Particle Transport Code. Version 5. LA-UR-03-1987, LANL, (2003).
3. Zabrodskaya S.V., Ignatyuk A.V., Koscheev V.N. et al. ROSFOND-2010 Library. Obninsk, IPPE Publ., 2010.
4. Chadwick M. et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets, 2011, vol. 112, no. 12, pp. 2887—2996.
5. MacFarlane R.E., Muir D.W., Boicourt R.M., Kahler A.C. The NJOY Nuclear Data Processing System. Version 2012. LA-UR-12-27079, upd.50, 2015.
6. Sinitsa V.V. Programma "Paket GRUCON-D" [Program "Package GRUCON-D"], NEA-1899. Available at: https://wwwnds.iaea.org/grucon/ (дата обращение 21.09.2018).
7. Brown F.B. The makxsf code with Doppler Broadening. LANL, LA-UR-06-7002, 2006.
8. Kiedrowski B.C., Brown F.B., Wilson P.P.H. Calculating Kinetics Parameters and Reactivity Changes with Continuous-Energy Monte Carlo. Proc. PHYSOR-2010. Pittsburgh, PA, USA, 2010.
9. Zatsepin O.V., Kandiev Ya.Z., Kashaeva E.A., Malyshkin G.N., Modestov D.G. Raschety metodom Monte-Karlo po programme PRIZMA neytronno-fizicheskikh kharakteristik aktivnoy zony reaktora VVER-1000 [Monte Carlo calculations using the PRISMA program for neutron-physical characteristics of the core of a WWER-1000 reactor]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2011, no. 4, pp. 64—73.
10. Zhitnik A.K., Ivanov N.V., Marshalkin V.E. et al. Programma TDMCC dlya raschetov prostranstvennoy neytronnoy dinamiki aktivnykh zon AES metodom Monte-Karlo [TDMCC program for Monte-Carlo calculations of the spatial neutron dynamics of NPP cores]. Trudy vserossiyskogo seminara NEYTRONIKA-2009 [Proc. All-Russian seminar NEUTRONICS-2009]. Obninsk, 2009.
11. Peregudov A.A., Raskach K.F., Semenov M.Yu. et al. Rezul'taty verifikatsii programm raschetov neytronno-fizicheskikh kharakteristik aktivnoy zony reaktora tipa BN-1200 [The results of verification of calculation programs for neutron-physical characteristics of the reactor core of the BN-1200 type]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2014, no. 4, pp. 66—76.
12. Alter H. et al. Cross Section Evaluation Working Group Benchmark Specifications. (ENDF-202) BNL-19302, Brookhaven National Laboratory, Upton (1974).
UDC 004.94:681.3.06
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2019, issue 1, 1:21