Pryanichnikov A.A.1,3, Simakov A.S.1, Belikhin M.A.1,3,
Degtyarev I.I.2, Novoskoltsev F.N.2, Altukhova E.V.2, Altukhov Yu.V.2, Sinyukov R.Yu.2
1 Physical-Technical Center of P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Protvino, Russia
2 Institute for High Energy Physics named by A.A. Logunov of NRC “Kurchatov Institute”, Protvino, Russia
3 Lomonosov Moscow State University, Moscow, Russia
Lately, beams of heavy charged particles, e.g., protons and carbon ions, have found wide application in radiation therapy of oncological diseases owing to the fundamental possibility of qualitative im-provement of the spatial dose distributions when compared to sources of electrons and γ-rays conven-tionally used in radiation therapy, which makes it possible to radically decrease the radiation absorbed dose of the undamaged regions of the tissue adjacent to a tumor. In this paper a results of computer simulation are compared with experimental data for carbon ion carbon ion ranges in homogeneous phantoms using the RTS&T, FLUKA and MCNPX Monte Carlo multi-particle particle and ion transport code systems. Calculations of the main microdosimetric characteristics for cellular structures placed in homogeneous water phantoms are shown: average dose, linear energy transfer (LET), relative biological efficacy (RBE) and biological dose based on the Microbiological Kinetic Model (MKM) within software complex RTS&T. Calculations were made for the beam of 12C6+ ions with the energy of 454 MeV/u. Experimental data were obtained at the Temporary Radiobiological Stand of the U-70 accelerator complex at the Institute of High Energy Physics NRC "Kurchatov Institute", Protvino.
1. Blokhin A.I., Degtyarev I.I., Lokhovitskii A.E., Maslov M.A., Yazynin I.A. RTS&T Monte Carlo Code (Facilities and Computation Methods). Proc. of the SARE-3 Workshop. KEK, Tsukuba, Japan, 1997; INDC(CCP)-426.
2. Degtyarev I.I., Liashenko O.A., Lokhovitskii A.E., Yazynin I.A., Belyakov-Bodin V.I., Blokhin A.I. Discrete processes modelling and geometry description in RTS&T code. Voprosy atomnoy nauki i tekhniki. Seriya: Yadernye konstanty - Problems of atomic science and technology. Series: Nuclear Constants, 1999, no. 2, pp. 125.
3. Degtyarev I.I., Liashenko O.A., Yazynin I.A., Blokhin A.I., Belyakov-Bodin V.I. Simulation of Relativistic Hadronic Interactions in the Framework of the RTS&T-2004 Code. Proc. Conf. of RuPAC XIX. Dubna, 2004.
4. Belyakov-Bodin V.I., Degtyarev I.I., Niita K. et al. Calonmetric-time-of-flight technique for determination of energy spectra of particles from a high intensity pulsed proton target. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 465, no. 2-3, pp. 346—353.
5. Degtyarev I.I., Novoskoltsev F.N., Liashenko O.A., Gulina E.V., Morozova L.V. The RTS&T-2014 code status. Nuclear Energy and Technology, 2015, vol. 1, no. 3, pp. 222—225.
6. Pryanichnikov A.A., Simakov A.S., Degtyarev I.I., Novoskoltsev F.N., Altukhova E.V., Altukhov Yu.V., Sinyukov R.Yu., Blokhin A.I. Verification of the world evaluated nuclear data libraries on the basis of integral experiments using the RTS&T code system. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty - Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constans, 2018, no. 1, pp. 127—136.
7. Degtyarev I.I., Altukhov Y.V., Altukhova E.V., Novoskoltsev F.N., Sinyukov R.Yu., Blokhin A.I., Pryanichnikov A.A., Belikhin M.A., Simakov A.S., Smetanin M.Yu. Verification of Modern Evaluated Nuclear Data Libraries on the Basis of Integral Experiments Using the RTS&T Code System. Proc. Conf. of RuPAC-2018. Protvino, 2018.
8. Cullen D.E. The 1996 ENDF/B Pre-Processing Codes. Vienna, Austria, IAEA, IAEA-NDS-39, Rev. 9, 1996.
9. Niita K. et al. Analysis of the (N,xN') reactions by quantum molecular dynamics plus statistical decay model. Physical Review C: covering nuclear physics, 1995, vol. 52, no. 5, pp. 2620.
10. Barashenkov V.S., Zheregy F.G., Musulmanbekov Zh.Zh. Intranuclear cascade studies of inelastic nucleus-nucleus interactions. Preprint JINR P2-83-117. Dubna, 1983.
11. Musulmanbekov G., Al–Haidary A. Fragmentation of Nuclei at Intermediate and High Energies in Modifed Cascade Model. Physics of Atomic Nuclei (Yadernaya fizika), 2003, vol. 66, pp. 1671—1679.
12. Salvat F., Fernandez-Varea J.M., Sempau J. PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron and Photon Transport. Proc. Workshop. Barcelona, Spain, 2008, no. 6416.
13. Barashenkov V.S. Cross sections for interactions of particles and nuclei with nuclei. Dubna, JINR, 1999.
14. Barashenkov V.S., Kumawat H. Integral nucleus-nucleus cross sections. JINR E2-2003-128.
15. Tripathi R.K., Cucinotta F.A., Wilson J.W. Extraction of In-Medium Nucleon-Nucleon Amplitude From Experiment. NASA/TP-1998-208438. Hampton, VA United States, 1998.
16. Ziegler J.F., Ziegler M.D., Biersack J.P. SRIM The stopping and range of ions in matter. Nuclear Instruments and Methods in Physics Research Section B, 2010, vol. 268, no. 11-12, pp. 1818—1823.
17. Paul H. Stopping Power for Light Ions. Available at: http://www.exphys.unilinz.ac.at/stopping/ (accessed 21.08.2018).
18. Armstrong T.V., Chandler K.C. A FORTRAN program for computing stopping powers and ranges for muons, charged pions, protons, and heavy ions, 1973. Available at: https://www.osti.gov/servlets/purl/4477546 (accessed 21.08.2018).
19. Geissel H., Scheidenberger C. Slowing down of relativistic heavy ions and new applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1998, vol. 136-138, pp. 114—124.
20. Scheidenberger C., Geissel H. Penetration of relativistic heavy ions through matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1998, vol. 135, no. 1-4, pp. 25—34.
21. Pryanichnikov A.A., Simakov A.S., Degtyarev I.I., Novoskoltsev F.N., Altukhova E.V., Altukhov Yu.V., Sinyukov R.Yu. Numerical simulation of real-time Bragg peak position detection based on the registration of prompt gamma rays in the orthogonal direction for application in hadronic therapy. 2018, no. 1, pp. 114—126. (in Russian)
22. Pryanichnikov A.A., Belikhin M.A., Simakov A.S., Altukhov Y.V., Altukhova E.V., Degtyarev I.I., Novoskoltsev F.N., Sinyukov R.Yu. Numerical Modeling and Development of the Prototype of the Bragg Peak Position Detector Working in Real Time Mode for Hadron Therapy Facilities. Proc. Conf. RuPAC-2018. Protvino, 2018.
23. Guan F. et al. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy uing the Geant4 Monte Carlo code. Medical Physics, 2015, vol. 42, no. 11, pp. 6234—6247.
24. Hawkins R.B. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Medical Physics, 1998, vol. 25, no. 7, pp. 1157—1170.
25. Hawkins R.B. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. International Journal of Radiation Biology, 1996, vol. 69, pp. 739—755.
26. Hawkins R.B. A Microdosimetric-Kinetic Model for the Effect of Non-Poisson Distribution of Lethal Lesions on the Variation of RBE with LET. Radiation Research, 2003, vol. 160, no. 1, pp. 61—69.
27. Kase Y., Kanai T., Matsumoto Y., Furusawa Y., Okamoto H., Asaba T., Sakama M., Shinoda H. Microdosimetric Measurements and Estimation of Human Cell Survival for Heavy-Ion Beams. Radiation Research, 2006, vol. 166, no. 1, pp. 629—638.
28. Scholz M., Kraft G. Track structure and the calculation of biological effects of heavy charged particles. Advances in Space Research, 1996, vol. 18, no. 1-2, pp. 5—14.
29. Scholz M., Kellerer A.M., Kraft-Weyrather W., Kraft G. Computation of cell survival in heavy ion beams for therapy the model and its approximation. Radiation and Environmental Biophysics, 1997, vol. 36, pp. 59—66.
30. Dabli D., Montarou G., Beuve M., Rodriguez-Lafrasse C. RBE modelization: Present Status and Future Prospects, (2011). Available at: http://hal.in2p3.fr/in2p3-00659263 (accessed 21.08.2018).
31. Inaniwa T., Kanematsu N., Matsufuji N., Kanai T., Shirai T., Noda K., Tsuji H., Kamada T., Tsujii H. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences. Physics in Medicine & Biology, vol. 60, no. 8, pp. 3271—86.
32. Ilsung Cho, Seung Hoon Yoo, Sungho Cho, Eun Ho Kim, Yongkeun Song, Jaeik Shin, Won-Gyun Jung. Modeling the Biophysical Effects in a Carbon Beam Delivery Line using Monte Carlo Simulation. Journal of the Korean Physical Society, 2016, vol. 69, no. 5, pp 868—874.
33. Claesson K., Magnander K., Kahu H., Lindgren S., Hulborn R., Elmroth K. RBE of &aipha;-particles from 211At for complex DNA damage and cell survival in relation to cell cycle position. International Journal of Radiation Biology, 2011, vol. 87, no. 4, pp. 372—384.
34. Amaldi U., Kraft G. Radiotherapy with beams of carbon ions. Reports on Progress in Physics, 2005, vol. 68, pp. 1861—1882.