Mitenkova E.F., Novikov N.V., Solovyova E.V.
Nuclear Safety Institute of the Russian Academy of Sciences, Moscow, Russia
The computational methods of improved accuracy for neutronic process simulation in modern codes cause the new problems to substantiate the calculated characteristics and final errors, that requires the new approaches and computational tools. The traditional comparison of Calculation and Experiment results is often impossible due to the incompleteness of description of the experiment, the lack of necessary experimental data and underestimation of the experimental errors. In addition, verification of modern neutronic codes requires significantly more “reference” data than those, presented in benchmarks. The objective difficulties to obtain the experimental data of desired accuracy in the right amount necessitate the additional means for modern code benchmarking. A computational experiment, providing the “interval” values for key characteristics can be useful tool when testing modern neutronic codes under advanced simulation conditions. The problem of benchmarking is considered for nuclide kinetics problems when using the full element basis of fission products yields. The Computational Experiment is used to simulate the experiment with uranium sample irradiation in BN-350 reactor under conditions of incomplete description of the Physical Experiment.
1. Hayrer E., Vanner G. Reshenie obyknovennykh differentsial'nykh uravneniy. Zhestkie i differentsial'no-algebraicheskie zadachi [Solving ordinary differential equations. Hard and differential algebraic problems]. Moscow, Mir Publ., 1999. 685 p.
2. Manichev V.B., Zhuk D.M. Bazovyy nabor testovykh zadach dlya reshateley sistem ODU [Basic set of test problems for solvers of ODE systems]. Tekhnologii inzhenernykh i informatsionnykh system - Technologies of engineering and information systems, 2016, vol. 2, no. 4, pp. 70–84.
3. Allen G.Croff. ORIGEN2: A versatile computer code for calculating the nuclide compositions and characteristics of nuclear materials. Nuclear technology, 1983, vol. 62, pp. 335–352.
4. Solov'ev A.V., Mitenkova E.F., Novikov N.V., Solov'eva E.V. Reshenie zadach izotopnoy kinetiki na polnom bazise elementov vykhoda produktov deleniya [Solving problems of isotope kinetics on the full basis of fission product release elements]. Atomnaya energiya – Atomic Energy, 2016, vol. 120, no. 3, pp. 165–170.
5. Pusa M. Higher–order chebyshev rational approximation method (CRAM). Proc. PHYSOR’2014. Kyoto, Japan, 2014.
6. Zhuk D.M., Manichev V.B., Sakharov M.K. SADEL – biblioteka “sverkhtochnykh” reshateley dlya programmnogo kompleksa PA10 (SADEL–PA10) [SADEL – library of “ultra-precise” solvers for the PA10 software package (SADEL – PA10)]. Moscow, IPPM RAN Publ., 2012. Pp. 147–153.
7. Mitenkova E.F, Solov'eva E.V., Manichev V.B., Fel'dman E.O. Zadachi izotopnoy kinetiki na polnom bazise vykhoda produktov deleniya [Problems of isotope kinetics on the full basis of the yield of fission products]. Atomnaya energiya - Atomic Energy, 2018, vol. 124, no. 1, pp. 54–57.
8. Mitenkova E.F., Novikov N.V. Vliyanie biblioteki vykhoda produktov deleniya na raschet nuklidnogo sostava topliva v bystrykh reaktorakh s natrievym teplonositelem [The influence of the fission product yield library on the calculation of the nuclide composition of the fuel in sodium-cooled fast reactors]. Atomnaya energiya - Atomic Energy, 2011, vol. 111, no. 2, pp. 77–83.
9. Mitenkova E.F., Novikov N.V., Solov'eva E.V. Biblioteki s rasshirennym predstavleniem vykhoda produktov deleniya v raschetakh nuklidnogo sostava topliva v bystrom spektre [Libraries with an extended view of the yield of fission products in the calculations of the nuclide composition of the fuel in the fast spectrum]. Atomnaya energiya - Atomic Energy, 2014, vol. 117, no. 6, pp. 341–346.
10. Mitenkova E.F., Novikov N.V. Effect of fission yield libraries on the irradiated fuel composition in Monte Carlo depletion calculations. Proc. 7th Workshop Nuclear Measurements, Evaluations and Applications (NEMEA-7). Geel, Belgium, 2013, pp. 287–296.
11. Kochetkov A.L., Semenov M.Yu., Khomyakov Yu.S. et al. Verifikatsiya programmy CARE v reaktornykh transmutatsionnykh eksperimentakh na BN-350, BN-600 i BOR-60 [Verification of the CARE program in reactor transmutation experiments on BN-350, BN-600 and BOR-60]. Trudy nauchno-tekhnicheskoy konferentsii NEYTRONIKA-2003 [Proceedings of the scientific and technical conference NEUTRONIKA-2003]. Obninsk, 2003.
12. BN-600 Hybrid Core Benchmark Analyses. IAEA-TECDOC-1623. Vienna, Austria, IAEA, 2010.
13. Mitenkova E.F., Solov'eva E.V. Opisanie modulya VAR-GM generatsii raschetnykh faylov v mnogovariantnykh raschetakh MCNP-MONTEBURNS-ORIGEN dlya var'irovaniya geometricheskikh i material'nykh parametrov aktivnoy zony [Description of the VAR-GM module for generating calculation files in the multivariate calculations MCNP-MONTEBURNS-ORIGEN for varying the geometric and material parameters of the active zone]. Preprint IBRAE IBRAE-2011-06 - Preprint IBRAE IBRAE-2011-06. Moscow, 2011. 25 p.
14. Mitenkova E.F., Novikov N.V. Minimal'naya pogreshnost' rascheta nakopleniya gazoobraznykh produktov deleniya v metallicheskom toplive, obluchaemom v bystrom spektre [The minimum error in calculating the accumulation of gaseous fission products in a metallic fuel irradiated in a fast spectrum]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of atomic science and technology. Series: Physics of Nuclear Reactors, 2016, no. 1, pp. 77–90.
15. Nikolaev M.N., Khomyakov Yu.S., Tsibulya A.M. et al. Otsenka rezul'tatov eksperimentov po izmeneniyu nuklidnogo sostava razlichnykh toplivnykh materialov v protsesse oblucheniya v reaktore BN 350 [Evaluation of the results of experiments on the change in the nuclide composition of various fuel materials in the process of irradiation in the BN-350 reactor]. Trudy Mezhdunarodnogo seminara “Nuclear Power Technologies” [Proc. Int. Seminar “Nuclear Power Technologies”]. Astana, Kazakhstan, 2000, pp. 47.