Glebov A.P., Baranaev Yu.D., Moskovchenko I.V., Kirillov P.L.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The nuclear reactor cooled by supercritical pressure water – SCWR (Supercritical Water-cooled Reactor) is adopted as one of the promising reactors of the IV-generation. SCWR conceptual proposals are developed by more than 45 organizations in 16 countries with developed nuclear energy.
The SCWR concept is based on the implementation of a single-circuit direct-flow scheme of nuclear power plants cooled by SKD water. The introduction of reactors of this type will increase the efficiency up to 45 %, increase the coefficient of fuel reproduction, reduce metal consumption and construction volumes, improve economic and environmental performance.
Countries participating in the MFP in the direction of SCWR consider the development of a reactor with a thermal spectrum of neutrons and uranium fuel to be a priority, but in the subsequent stages, with an increase in problems with the storage of spent nuclear fuel (SNF) and Junior actinides (MA), it is possible to move to a reactor with a fast neutron spectrum, MOX fuel and a closed fuel cycle (ZTC).
For ~10 years, the SSC RF — FEI and OKB "Gidropress" have been working together on the conceptual design of VVER-SKD – single-circuit RP with SCD coolant with a fast-resonance neutron spectrum with a capacity of Ne=1700 MW. This rector is recognized as the prospect of development of VVER technology with the possibility of using uranium fuel and the transition in the future to MOX-based fuel (U-Pu-Th) and to ZTZ. Rosatom recognizes this area as an innovative one, and has signed systemic agreements on Russia's participation in the work of the MFP in the SCWR direction.
The paper presents the results of computational studies on the main version of the high-power reactor, as well as the test N=30 MW.
1. Buongiorno J., MasDonald P.E. Supercritical Water-Cooled Reactor (SCWR). Progress Report for the FY-03 Generation-IV R&D Activities for the Development of the SCWR in the U.S. INEEL\EXT-03-01210, 2003, p. 38.
2. Yetisir M., Gaudet M., Rhodes D. Development and Integration of Canadian SCWR Concept with Counter-Flow Fuel Assembly. Proc. 6th Int. Symposium ISSCWR-6. Shenzhen, Guangdong, China, 2013, Paper 13059.
3. Sulenberg T., Starflinger J. Haig Performance Light Water Reactor. Design and Analyses. KIT, Scientific Publishing, 2012. 242 p.
4. Cheng Xu et al. A mixed core for Supercritical Water-Cooled Reactors. Nuclear engineering and technology, 2007, vol. 40, no. 2, pp. 117–126.
5. Glebov A.P., Klushin A.V. Reaktor s bystro-rezonansnym spektrom neytronov, okhlazhdaemyy vodoy sverkhkriticheskogo davleniya pri dvukhkhodovoy skheme dvizheniya teplonositelya [A reactor with a fast-resonance neutron spectrum cooled by supercritical water at a two-way coolant flow pattern]. Atomnaya energiya – Atomic Energy, 2006, vol. 100, no. 5, pp. 349–355.
6. Glebov A.P., Klushin A.V. Teplovoy reaktor s uran-plutoniy-torievym toplivnym tsiklom, okhlazhdaemyy vodoy sverkhkriticheskogo davleniya pri dvukhkhodovoy skheme dvizheniya teplonositelya [Thermal reactor with a uranium-plutonium-thorium fuel cycle, cooled by supercritical water at a two-way flow pattern of the coolant]. Atomnaya energiya – Atomic Energy, 2009, vol. 106, no. 5, pp. 243–249.
7. Baranaev Yu.D., Glebov A.P., Dolgov E.V. et al. Sravnitel'nyy analiz fizicheskikh kharakteristik reaktorov VVER-SKD pri odno- i dvukhkhodovoy skhemakh dvizheniya teplonositelya [Comparative analysis of the physical characteristics of VVER-SKD reactors with one- and two-way coolant flow patterns]. Preprint FEI-3110 – Preprint IPPE-3110. Obninsk, 2007.
8. Glebov A.P., Klushin A.V., Baranaev Yu.D., Kirillov P.L. Presearch of Features of U-Pu-Th Fuel Cycle and its use for Burning up of Minor Actinides in Supercritical Water-Cooled Reactor with Fast Neutron Spectrum. Proc. ICONE21. Chengdu, China, 2013, Paper 16888.
9. Baranaev Yu.D., Glebov A.P., Klushin A.V. Ispol'zovanie reaktorov, okhlazhdaemykh vodoy sverkhkriticheskogo davleniya – VVER-SKD v zamknutom toplivnom tsikle [The use of supercritical water cooled reactors – VVER-SKD in a closed fuel cycle]. Trudy 7 MNTK “Bezopasnost', effektivnost' i ekonomika atomnoy energetiki” [Proc. 7th Int. Sci. and Techn. Conf. "Safety, Efficiency and Economics of Atomic Energy"]. Moscow, 2010, pp. 381–383.
10. Ryzhov S.B., Mokhov V.A., Nikitenko M.P. et al. Kontseptsiya odnokonturnoy RU VVER-SKD s korpusnym reaktorom, okhlazhdaemym vodoy sverkhkriticheskogo davleniya [The concept of a single-loop VVER-SKD RP with a supercritical water-cooled tank reactor]. Trudy 5 Mezhdunarodnogo simpoziuma ISSCWR-5 [Proc. 5th Int. Symposium ISSCWR-5]. Vancouver, Canada, 2011.
11. Nuclear Engineering and Radiation Science, 2018, vol. 4.
12. Baranaev Yu.D., Glebov A.P., Kirillov P.L., Klushin A.V. Neutronic Characteristics of a 30 MWt SCW Experimental Reactor: From Water-Cooled Power Reactor Technology to a Direct Cycle Nuclear Reactor with Supercritical Water Parameters and Fast Neutron Spectrum. Proc. 6th Int. Symposium ISSCWR-6. Shenzhen, Guangdong, China, 2013, Paper 13108.
13. Baranaev Yu.D., Glebov A.P., Klushin A.V. Reaktor, okhlazhdaemykh vodoy sverkhkriticheskogo davleniya, VVER-SKD osnovnoy pretendent v “SUPER-VVER” [Supercritical water cooled ector, VVER-SKD is the main challenger in SUPER-VVER]. Preprint FEI-3188 – Preprint IPPE-3188. Obninsk, 2010.
14. Baranaev Yu.D. et al. Yadernye reaktory na vode sverkhkriticheskogo davleniya [Nuclear reactors on supercritical water]. Atomnaya energiya - Atomic Energy, 2004, vol. 96, no. 5, pp. 374–380.
15. Kirillov P.L., Promet'ko R.S., Smirnov A.M., Grabezhnaya V.A. Issledovanie teploobmena pri sverkhkriticheskikh davleniyakh vody v trubakh i puchkakh sterzhney [Investigation of heat transfer at supercritical water pressures in pipes and rods bundles]. Preprint FEI-3051 – Preprint IPPE-3051. Obninsk, 2005.
16. Popov V.V. Prochnostnoe obosnovanie vybora materialov na sverkhkriticheskom davlenii (SKD) [Strength substantiation of the choice of materials at supercritical pressure]. Preprint FEI-3117 – Preprint IPPE-3117. Obninsk, 2007.
17. Tsibulya A.M., Matveenko I.P., Glebov A.P. et al. Raschetno-eksperimental'nyy analiz kritsborok BFS-105, modeliruyushchikh vodookhlazhdaemyy reaktor s povyshennym koeffitsientom vosproizvodstva [Computational and experimental analysis of the critical assembly BFS-105, simulating a water-cooled reactor with a high reproduction rate]. Trudy 6 mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Obespechenie bezopasnosti AES s VVER” [Proc. 6th Int. Sci. and Techn. Conf. "Ensuring the safety of nuclear power plants with VVER"]. Podolsk, 2009.
18. Markov S.I., Balikoev A.G., Dub V.S. et al. Razrabotka vysokoprochnoy teplostoykoy stali dlya VVER so sverkhkriticheskimi parametrami teplonositelya [Development of high-strength heat-resistant steel for VVER with supercritical coolant parameters]. Trudy nauchno-tekhnicheskoy konferentsii “Teplofizika-2012” [Proc. Sci. and Techn. Conf. "Thermophysics-2012"]. Obninsk, 2012.
19. Glebov A.P., Klushin A.V. Testovyy reaktor moshchnost'yu 30 MVt dlya otrabotki tekhnologii perekhoda VVER k odnokonturnoy YaEU o sverkhkriticheskimi parametrami vody i bystrym spektrom neytronov [A test reactor with a capacity of 30 MW for testing the technology of transferring a VVER to a single-loop NPI with supercritical water parameters and a fast neutron spectrum]. Trudy nauchno-tekhnicheskoy konferentsii “Teplofizika-2012” [Proc. Sci. and Techn. Conf. "Thermophysics-2012"]. Obninsk, 2012.
20. Baranaev Yu.D., Glebov A.P., Klushin A.V. Aktivnaya zona s bystro-rezonansnym spektrom neytronov so sverkhkriticheskim davleniem vody [An active zone with a fast-resonance neutron spectrum with supercritical water pressure]. Patent RF, no. 2485612, 2013.
21. Davidenko V.D., Tsibul'skiy S.V. Effektivnyy sposob szhiganiya energeticheskogo plutoniya v VVER [An efficient way to burn energy flotation in WWER]. Atomnaya energiya - Atomic Energy, 2015, vol. 118, no. 3, pp. 134–136.
22. Semidotskiy I.I. et al. O vzaimosvyazi teplogidravlicheskikh i neytronno-fizicheskikh kharakteristik legkovodnogo korpusnogo reaktora s peremennoy plotnost'yu teplonositelya v aktivnoy zone reaktora (na primere rezhimov RU VK-50) [On the relationship of thermal-hydraulic and neutron-physical characteristics of a light-water tank reactor with variable coolant density in the reactor core (for example, VK-50 RU modes)]. Trudy konferentsii “Obespechenie bezopasnosti AES s VVER” [Proc. Conf. "Ensuring the safety of nuclear power plants with VVER"]. Podolsk, 2013.