Artemov V.G., Artemova L.M., Mikheev P.A.
Alexandrov Research Institute of Technology, Sosnovy Bor, Russia
This paper describes the capability of sensitivity and uncertainty analysis (SUA) for estimation of power calculation error during the computer code verification compared to the data received in experiments at operating power plants. Estimation of errors in code verification calculation against measurements at operating plants and assessment of conservatism in safety calculations are considered as two interrelated problems. A defining moment in this approach is that one or more test cases are selected; selected test cases are included in matrix of code verification assuming that these test cases involve the same physical phenomena as in simulated accident scenarios. The criterion of test case “representativeness” is similarity between correlation coefficients of model predictions in accident scenario and test case. The example demonstrates how the SUA approach is used in calculations with the VVER-1000 coupled neutronic and thermal-hydraulic simulation model based on the KORSAR/GP and SAPFIR_95&RC_VVER codes.
1. NP-001-15. Obshchie polozheniya obespecheniya bezopasnosti atomnykh stantsiy [General provisions for the safety of nuclear power plants]. Available at: https://www.seogan.ru/np-001-15-obshie-polozheniya-obespecheniya-bezopasnosti-atomnix-stanciiy.html (accessed 12.10.2018).
2. Bogdan S.N., Kovalevich O.M., Kozlova N.A., Shevchenko S.A., Yashnikov D.A. Ob otsenke pogresh-nostey i neopredelennostey raschetov, vypolnyaemykh pri obosnovanii bezopasnosti ob"ektov ispol'zovaniya atomnoy energii [On the estimation of errors and uncertainties of calculations performed when justifying the safety of nuclear facilities]. Moscow, SEC NRS Publ., 2017.
3. Artemov V.G., Artemova L.M., Korotaev V.G., Mikheev P.A. Primenenie metoda analiza neopredelennosti i chuvstvitel'nosti v sopryazhennykh neytronno-fizicheskikh i teplogidravlicheskikh raschetakh [Application of the method of analysis of uncertainty and sensitivity in conjugate neutron-physical and thermal-hydraulic calculations]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constans, 2014, no. 3, pp. 71–81.
4. Software complex KORSAR/GP. Certification passport PS no. 263. Moscow, Federal Service for Environmental, Technological and Nuclear Supervision Publ., 2009.
5. Program SAPFIR_95&RC_VVER. Certification passport PS no. 321. Moscow, Federal Service for Environmental, Technological and Nuclear Supervision Publ., 2013.
6. The program SAPFIR_95.1. Certification passport PS no. 390. Moscow, Federal Service for Environ-mental, Technological and Nuclear Supervision Publ., 2015.
7. Vladimirov A.V., Granovskiy V.S, Gudoshnikov A.N., Danilov I.G., Donchenko D.N., Korotaev V.G., Migrov Yu.A. Analiz neopredelennostey pri chislennom modelirovanii avariynykh rezhimov VVER s pomoshch'yu PK PANDA/KORSAR [Uncertainty analysis in numerical simulation of WWER emergency conditions using the PANDA/KORSAR]. Trudy mezhvedomstvennogo seminara "Teplogidravlicheskie aspekty bezopasnosti aktivnykh zon, okhlazhdaemykh vodoy i zhidkimi metallami" TEPLOFIZIKA-2008 [Proc. Int. seminar "Thermalhydraulic aspects of the safety of active zones cooled by water and liquid metals"]. Obninsk, 2008, pp. 160.
8. Wilks S. Determination of sample sizes for setting tolerance limits. Annals of Mathematical Statistics, 1941, vol. 12, no. 1, pp. 91–96.
9. Gorokhov A.K., Dragunov Yu.G., Lunin G.L. et al. Obosnovanie neytronno-fizicheskoy i radiatsionnykh chastey proektov VVER [Justification of neutron-physical and radiation parts of VVER projects]. Moscow, Akademkniga Publ., 2004.
10. Spasskov V.P., Dragunov Yu.G., Ryzhov S.B. et al. Raschetnoe obosnovanie teplogidravlicheskikh kharakteristik reaktorov i RU VVER [Estimated justification of thermal-hydraulic characteristics of reactors and VVER]. Moscow, Akademkniga Publ., 2004.