Sorokin A.P., Kirillov P.L., Kuzina Ju.A., Grabezhnaya V.A., Loschinin V.M.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Calculations to substantiate the characteristics of a reactor cooled by water with supercritical steam parameters and an adjustable neutron spectrum require clarification of data on heat transfer characteristics. The features and data on heat transfer in round pipes and rod bundles at supercritical pressures (SCP) are considered. In analysis of hydrodynamics and heat transfer dates with the flow of water of supercritical parameters in round pipes, an area of both more intense and degraded convective heat transfer was detected compared to subcritical pressures. It is assumed that one of the reasons for the deteriorated heat exchange is the presence of a near-wall layer consisting of a "gas" phase with low thermal conductivity and a central flow region in the form of a liquid-like phase having a lower temperature. A brief review of data on heat transfer in round tubes and rod bundles with SCP is presented. Since experiments on water are complex and expensive, many results, including the SSC RF – IPPE, were obtained on model media (CO2 and freon-12). Shown that despite the diversity of recommendations on the boundary regime with the deterioration of heat transfer, the proposed ratios give a different dependence of the heat flux density on the mass velocity. They do not consider the influence of such parameters as pressure, channel geometry, temperature of heat exchange surface, etc., they are obtained for a narrow range of parameters. And only extensive analytical studies of Yu.A. Zeigarnik et al. (JIHT RAS, NRU "MEI") allowed to summarize the data on heat transfer in round pipes at SCP. Only limited data was obtained by Russian, Ukrainian and Chinese specialists in heat transfer in bundles with a small number of pipes. The results of Chinese experts have shown that heat transfer in rod bundles at supercritical water pressures is higher and more stable than when water moves in pipes and annular channels. In close bundles, the deterioration of heat transfer occurred at low mass velocities and high heat fluxes, and in widespread deterioration of heat transfer was not observed. The growth of heat transfer in the rod bundles is promoted by mixing with spacer and mixing grids, which destroy the wall barrier layer, which prevents the transfer of heat under supercritical pressure from the wall to the center of the flow. The accumulation of new experimental data and additional analysis of research are necessary. A description and technical characteristics of the thermo-hydraulic facilities of the SCP on water (SVD-1 and SVD-2) and freon-12 (STF) available at SSC RF – IPPE is provided. The results of experiments at SSC RF – IPPE and technical approach and methodology of future experiments in hydrodynamics and heat transfer at SCP is presented and discussed.
1. Baranaev Yu.D., Kirillov P.L., Poplavsky V.M., Sharapov V.N. Yadernye reaktory na vode sverhkriticheskogo davleniya [Nuclear reactors on supercritical water]. Atomnaya energiya - Atomic Energy, 2004, vol. 96, no. 5, pp. 374–380.
2. Kirillov P.L. Vodoohlazhdaemyj reaktor VVER SKD (predvaritel'nye razrabotki) [Water cooled VVER SKD reactor (preliminary development)]. Izvestiya vuzov. Yadernaya energetika - Proseedings of Universities. Nuclear Power Engineering, 2013, no. 1, pp. 5–14.
3. Mahin V.M., Churkin A.N. Konceptual'nye predlozheniya po vodoohlazhdaemomu reaktoru so sverhkriticheskimi parametrami (obzor zarubezhnyh i rossijskih reaktorov SCWR): Obzor [Conceptual proposals for a supercritical water cooled reactor (review of foreign and Russian SCWR reactors): An Overview]. Podolsk, AO OKB “GIDROPRESS” Publ., 2017.
4. Kirillov P.L. Perekhod na sverhkriticheskie parametry – put' k sovershenstvovaniyu AES s vodoohlazhdaemymi reaktorami [The transition to supercritical parameters is the way to improve nuclear power plants with water-cooled reactors]. Teploenergetika - Thermal Engineering, 2001, no. 12, pp. 6–10.
5. Silin V.A., Semchenkov Yu.M., Alekseev P.N., Mitkin V.V., Zorin V.M., Hlopov V.A. Problemy perekhoda na sverhkriticheskie parametry teplonositelya v yadernoj energetike [Problems of transition to supercritical coolant parameters in nuclear power engineering]. Atomnaya energiya - Atomic Energy, 2014, vol. 117, no. 5, pp. 254–261.
6. Glebov A.P., Klushin A.V. Reaktor s bystrorezonansnym spektrom nejtronov, ohlazhdaemyj vodoj sverhkriticheskogo davleniya pri dvuhkhodovoj skheme dvizheniya teplonositelya [A reactor with a fast-resonance spectrum of neutrons, cooled by supercritical water at a two-way circuit of the coolant] Atomnaya energiya - Atomic Energy, 2006, vol. 100, no. 5, pp. 349–355.
7. Styrikovich M.A., Margulova T.H., Miropol'skij Z.L. Nasushchnye problemy razvitiya kotlov zariticheskih parametrov [Urgent problems of the development of boilers of supercritical parameters]. Teploenergetika - Thermal Engineering, 1967, no. 6, pp. 4–7.
8. Petuhov B.S., Protopopov V.S., Silin V.D. Eksperimental'noe issledovanie rezhimov uhudshennogo teploobmena pri turbulentnom techenii dvuokisi ugleroda sverhkriticheskogo davleniya [Experimental study of the regimes of degraded heat transfer under turbulent flow of supercritical carbon dioxide]. Teplofizika vysokikh temperatur - High Temperature, 1972, vol. 10, no. 2, pp. 347–354.
9. Kameneckij B.Ya. Rezhimy pri smeshannoj konvekcii v vertikal'nyh trubah [Modes for mixed convection in vertical pipes]. Teplofizika vysokikh temperatur - High Temperature, 1973, vol. 11, no. 2, pp. 352–358.
10. Petuhov B.S., Polyakov A.F. Granicy rezhimov s “uhudshennoj” teplootdachej pri sverhkriticheskom davleniya teplonositelya [The boundaries of modes with "degraded" heat transfer at supercritical coolant pressure]. Teplofizika vysokikh temperatur - High Temperature, 1974, vol. 12, no. 1, pp. 221–224.
11. Kim J., Jeon H., Lee J. Experimental study on heat transfer characteristics of turbulent supercritical flow in vertical/non-circular tubes. Proc. 11th Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11). Avignon, France, 2005. Paper 266.
12. Kurganov V.A., Zejgarnik Yu.A., Yan'kov G.G., Maslakova I.V. Teploobmen i soprotivleniyu v trubah pri sverhkriticheskih davleniyah teplonositelya: itogi nauchnyh issledovanij i prakticheskie rekomedacii [Heat transfer and resistance in pipes at supercritical coolant pressures: results of scientific research and practical recommendations]. Moscow, LLC "Printing shop”Chance”, 2018.
13. Dedyakin B.V., Popov A.S. Teplota i gidravlicheskoe soprotivlenie tesnogo semisterzhnevogo puchka, ohlazhdaemogo potokom vody pri zakriticheskih parametrah sostoyaniya [Heat and hydraulic resistance of a close seven-rod beam cooled by water flow at supercritical state parameters]. Problemy sozdaniya i ekspluatacii atomnyh stancij - Problems of the creation and operation of nuclear power plants, 1977, no. 11, pp. 244–253.
14. Silin V.A., Semchenkov Yu.M., Alekseev P.N., Mit'kin V.V., Zorin V.M., Hlopov V.A. Issledovanie teploobmena i gidravlicheskogo soprotivleniya pri techenii vody sverhkriticheskih parametrov primen-itel'no k reaktornym ustanovkam [Investigation of heat transfer and hydraulic resistance during the flow of water of supercritical parameters in relation to reactor installations]. Atomnaya energiya - Atomic Energy, 2010, vol. 108, no. 6, pp. 340–347.
15. Razumovskiy V.G., Mayevskiy E.M., Koloskov A.E., Sismenny E.N. Heat transfer in water at super-critical parameters in vertical tubes, annular channels, 3- and 7-rod bundles. Proc. 2th Int. of Nuclear Engineering. China, 2013. Paper 16442.
16. Oka Y., Morooka S., Yamakawa S. et al Research and development of super light water reactors and super fast reactors in Japan. Proc. 5th Int. Symposium on Supercritical Water–Cooled Reactors (ISSCWR–5). Canada, 2011. Paper K 002.
17. Wang H., Bi Q., Wang L. et al Experimental investigations of heat transfer from a 2x2 rod bundle to supercritical pressure water. Nuclear Engineering and Design, 2014, vol. 275, pp. 205–218.
18. Gu H., Li H., Hu Z., Cheng X. Experimental studies on heat transfer to supercritical water in 2x2 rod bundles. Proc. 7th Int. Symposium on Supercritical Water-Cooled Reactors. Finland, 2015. Paper 2052.
19. Grachev N.S., Kirillov P.L., Prohorova V.A. Eksperimental'noe issledovanie teploobmena v parogeneriruyushchej trube s vnutrennim orebreniem [Experimental study of heat transfer in a steam generating tube with internal fins]. Teplofizika vysokikh temperatur – High Temperature, 1976, vol. 15, no. 6, pp. 1234–1240.
20. Ackerman J. Heat transfer to supercritical pressure water in smooth and Ribbed Tube. ASME, 1969. Paper 69–WA/HT–2.
21. Pershukov V.A., Arhangel'skij A.V., Kononov O.Е., Sorokin A.P. Teplofizicheskaya stendovaya baza atomnoj energetiki Rossii i Kazahstana [Thermal physical bench base of nuclear energy in Russia and Kazakhstan]. Sarov, FSUE RFNC – VNIIEF, 2016.
22. Kirillov P.L., Pomet'ko R.S., Smirnov A.M., Grabezhnaya V.A. Issledovanie teploobmena pri sverhkriticheskih davleniyah vody v trubah i puchkah sterzhnej [nvestigation of heat transfer at super-critical water pressures in pipes and rods bundles]. Preprint FEI-3051 – Preprint IPPE-3051. Obninsk, 2005.
23. Grabezhnaya V.A., Kirillov P.L. Teploobmen v trubah i puchkah sterzhnej pri techenii vody sverhkriticheskogo davleniya [Heat transfer in tubes and bundles of rods with supercritical pressure water]. Atomnaya energiya – Atomic Energy, 2004, vol. 96, no. 5, pp. 387—393.
24. Selivanov V.M., Smirnov A.M. Eksperimental'nye issledovaniya teploobmena v trube pri sverhkriticheskih davleniyah vody [Experimental studies of heat transfer in a pipe at supercritical water pressures]. Preprint FEI-1602 – Preprint IPPE-1602. Obninsk, 1984.
25. Kirillov P.L., Opanasenko A.N., Pomet'ko R.S., Shelegov A.S. Eksperimental'noe issledovanie teploobmena na puchke sterzhnej pri sverhkriticheskih parametrah freona-12 [Experimental study of heat transfer on a beam of rods with supercritical parameters of freon-12]. Preprint FEI-3075 – Preprint IPPE-3075. Obninsk, 2007.
26. Pomet'ko R.S., Opanasenko A.N., Shelegov A.S. Teploobmen pri sverhkriticheskih parametrah teplonositelya v puchke sterzhnej [Heat transfer with supercritical coolant parameters in a beam of rods]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2010, no. 2, pp. 142–150.
27. Krasnoshchekov Е.A., Protopopov V.S. Eksperimental'noe issledovanie teploobmena dvuokisi ugleroda v sverhkriticheskoj oblasti pri bol'shih temperaturnyh naporah [Experimental study of heat transfer of carbon dioxide in the supercritical region at high temperature heads]. Teplofizika vysokikh temperatur – High Temperature, 1966, vol. 4, no. 3, pp. 389–398.
28. Hall W., Jackson J. Heat transfer near the critical point. Proc. VI Int. Heat Transfer Conference. Toronto, Canada, 1978, vol. 6, pp. 377–392.
29. Kurganov V.A. Teploobmen i soprotivlenie v trubah pri sverhkriticheskih davleniyah teplonositelya. Chast’ 2 [Heat transfer and resistance in pipes at supercritical coolant pressures. Part 2]. Teploenergetika - Thermal Engineering, 1998, no. 4, pp. 35–44.
30. Popov V.N. Teoreticheskij raschet teplootdachi i soprotivleniya treniya dlya dvuokisi ugleroda v sverhkriticheskoj oblasti [Theoretical calculation of heat transfer and friction resistance for carbon dioxide in the supercritical region]. Minsk, 1964.
31. Zhukov A.V., Kirillov P.L., Matyuhin N.M., Sorokin A.P., Tikhomirov B.B., Ushakov P.A., Yur'ev Yu.S., Mantlik F., Gejna Ya., Shmid J, Shul'c V., Krett V. Teplogidravlicheskij raschet TVS bystryh reaktorov s zhidkometallicheskim ohlazhdeniem [Heat-hydraulic calculation of fuel assemblies of fast reactors with liquid metal cooling]. Moscow, Energoatomizdat Publ., 1985.
32. Bishop A., Sandberg R., Tong L. Forced convection heat transfer to water at near-critical temperatures and supercritical pressure. WCAP, USA, November 1964. Report-2056.
33. Ushakov P.A., Zhukov A.V., Titov P.A. Obobshchenie eksperimental'nyh dannyh po teplootdache k vode v shahmatnyh puchkah sterzhnej [Generalization of experimental data on heat transfer to water in chess rods]. Preprint FEI-526 – Preprint IPPE-526. Obninsk, 1974.
34. Yamagata K., Nishikava K., Fujii T., Yoshida S. Forced convection heat transfer to supercritical water flowing in tubes. International Journal of Heat and Mass Transfer, 1972, vol. 15, pp. 2575–1593.
35. Shicman M.Е. Uhudshennye rezhimy teplootdachi pri zakriticheskih davleniyah [Deteriorated heat transfer regimes at supercritical pressures]. Teplofizika vysokikh temperatur – High Temperature, 1963, vol. 1, no. 2, pp. 267–275.
36. Vihrev Yu.A., Lokshin V.A. Eksperimental'noe issledovanie temperaturnogo rezhima gorizontal'nyh parogeneriruyushchih trub pri sverhkriticheskih davleniyah [Experimental study of the temperature regime of horizontal steam generating tubes at supercritical pressures]. Teploenergetika – Thermal Engineering, 1964, no. 12, pp. 79–82.
37. Smolin V.N., Mihan V.I., Shpanskij S.V. et al. Issledovanie teplootdachi pri sverhkriticheskih parametrah vody na makete U-obraznogo kanala pryamotochnogo yadernogo reaktora [Investigation of heat transfer in supercritical water parameters on a model of a U-shaped channel of a direct-flow nuclear reactor]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika i tekhnika yadernykh reaktorov - Problems of atomic science and technology. Series: Physics and Technology of Nuclear Reactors, 1981, no. 4, pp. 3–10.
38. Kirillov P.L., Lozhkin V.V., Smirnov A.M. Issledovanie granic rezhimov v kanalah pri sverhkriticheskih davleniyah [Investigation of mode limits in channels at supercritical pressures]. Preprint FEI-2988 – Preprint IPPE-2988. Obninsk, 2003.
39. Grabezhnaya V.A., Kirillov P.L. Granica uhudsheniya teploobmena pri techenii sred sverhkriticheskogo davleniya [The boundary of the deterioration of heat transfer during the flow of supercritical pressure media]. Atomnaya energiya – Atomic Energy, 2006, vol. 101, no. 4, pp. 262–270.
40. Ikryannikov N.P., Petuhov B.S., Protopopov V.S. K raschetu teplootdachi v odnofaznoj okolokritich-eskoj oblasti pri vyazkostno-inercionno-gravitacionnom techenii [To the calculation of heat transfer in a single-phase near-critical region with a viscous-inertial-gravity flow]. Teplofizika vysokikh temperatur – High Temperature, 1973, vol. 11, no. 5, pp. 352–358.
41. Kurganov V.A., Ankudinov V.B., Kaptil'nyj A.G. Gidravlicheskoe soprotivlenie i teploobmen v vertikal'nyh trubah pri sverhkriticheskih davleniyah teplonositelya [Hydraulic resistance and heat transfer in vertical pipes at supercritical coolant pressures]. Moscow, IVTAN Publ., 1989. Pp. 95–160.
42. Gorban' L.M., Pomet'ko R.S., Hryashchev O.A. Modelirovanie teplootdachi na vode sverhkriticheskogo davleniya freonom [Simulation of heat transfer on supercritical water by freon]. Preprint FEI-2110 – Preprint IPPE-2110. Obninsk, 1990.