Orlova E.A.
Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
The fuel element is the complex system consisting of fuel, a sublayer, a cladding, protective coatings on a surface of a cladding and contacting to the cooler and material of a contour in general.
The synergetic (self-coherence) of interaction of elements of this system has to be provided both concerning high heat conductivity of fuel element, and concerning corrosion compatibility.
Use of a liquid metal sublayer (LMS) instead of gas, allows significantly (by hundreds of degrees) to reduce temperature in the center of fuel that increases safety at UTOP accidents (uncontrollable increase in power) at ULOF (loss of an expense of the cooler).
Gap thickness when using LMS (unlike helium) can be significantly increased that will practically not affect thermal characteristics of fuel element, but will allow to distance considerably time of approach of direct contact of fuel with a cladding, having increased thereby depth of burning out of heavy atoms and having increased cost efficiency and competitiveness of fast reactors extension of the fuel elements resource.
These principles when using heat-conducting nuclear fuel are especially effective (metal, nitride, carbide) and the lead heat carrier.
Synergetic reasonable corrosion compatibility of a cladding of fuel element with LMS is confirmed with numerous settlement pilot studies by means of formation and self-curing of accidental damages of a protective coating of nitride of zirconium on the internal surface of steel in LMS of eutectic structure on the basis of lead with magnesium and zirconium.
When using nitride fuel heat-conducting LMS with anticorrosive properties the resource of fuel element is limited not by swelling of fuel any more, and the dose damaging a cladding.
1. Adamov E.O., Orlov V.V., Smirnov V.S. Progress in lead cooled fast reactor design. Proc. Intern. Conf. on Design and Safety of Advanced Nuclear Power Plants. Tokyo, Japan, 1992, vol. 2, pp. 1–4.
2. Orlov V.V., Pikalov А.А., Sila-Novitskij А.G. et al. Eksperimental'nyy petlevoy kanal v reaktore BOR-60 dlya ispytaniy tvelov reaktorov BREST [Experimental loop channel in the BOR-60 reactor for testing BREST fuel rods]. Trudy mezhdunarodnoy konferentsii “Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh” TZhMT-98 [Proc. Int. Conf. "Heavy liquid metal coolants in nuclear technology" TZhMT-98]. Obninsk, 1999, pp. 521–528.
3. Kordyukov А.G., Leonov V.N., Pikalov А.А. et al. Ispytaniya maketov tvelov reaktora Brest-OD-300 v avtonomnom svintsovo-okhlazhdaemom kanale BOR-60 [Tests of models of fuel elements of the Brest-OD-300 reactor in an autonomous lead-cooled channel BOR-60]. Atomnaya energiya – Atomic Energy, 2004, vol. 97, no. 2, pp. 131–138.
4. Belyaeva А.V., Kryukov F.N., Nikitin O.N. et al. Osnovnye rezul'taty issledovaniy uran-plutonievogo nitridnogo topliva posle oblucheniya v reaktore BOR-60 [The main results of studies of uranium-plutonium nitride fuel after irradiation in the BOR-60 reactor]. Trudy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Innovatsionnye produkty i tekhnologii yadernoy energetiki” [Proc. Int. Sci. and Techn. Conf. "Innovative Products and Technologies of Nuclear Energy"]. Moscow, 2012, pp. 223–228.
5. Orlov V.V., Orlova E.А., Tsikunov V.S. et al. Formirovanie zashchitnykh nitridnykh pokrytiy na poverkhnosti staley [The formation of protective nitride coatings on the surface of steels]. Preprint NIKIET no.ET–08/77 - Preprint NIKIET no.ET–08/77. Moscow, 2008.
6. Orlova E.А., Gurbich А.F., Molodtsov S.L. et al. Formirovanie i issledovanie zashchitnykh pokrytiy, sovmestimykh s nitridnym toplivom, na stalyakh ferritno-martensitnogo klassa [Formation and study of protective coatings compatible with nitride fuel on steels of ferritic-martensitic class]. Atomnaya energiya - Atomic Energy, 2008, vol. 105, no. 5, pp. 269–274.
7. Orlova E.А., Orlov Yu.I., Kryuchkov E.А., Komyshnyj V.N., Zhmurin V.G., Zagrebaev S.А., Kotovskij N.А., Dvortsevoj V.G. Samoorganizuyushcheesya karbonitridnoe pokrytie na stali iz rasplavlennoy evtektiki svinets-magniy [Self-organizing carbonitride coating on steel from molten lead-magnesium eutectic]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2015, no. 1, pp. 45–55.
8. Orlova E.А., Bukin E.А. Formirovanie karbonitridnykh zashchitnykh pokrytiy na stali [The formation of carbonitride protective coatings on steel]. Trudy mezhvedomstvennogo seminara “Tyazhelye zhidkometallicheskie teplonositeli v bystrykh reaktorakh” [Proc. Int. Seminar "Heavy liquid metal coolants in fast reactors"]. Obninsk, 2010, pp. 406–414.
9. Orlov V.V., Leonov V.N., Orlova E.А. Sposob formirovaniya zashchitnogo pokrytiya na poverkhnosti metalla [A method of forming a protective coating on a metal surface]. Patent RF, no. 2439203, 2012.
10. Orlova E.А. Ustroystvo dlya sozdaniya zashchitnogo pokrytiya na metallicheskoy poverkhnosti izdeliya [Device for creating a protective coating on the metal surface of the product]. Patent RF, no. 99484, 2010.
11. Orlova E.А., Orlov Yu.I., Kryuchkov E.А. et al. Samoorganizuyushcheesya karbonitridnoe pokrytie na stali iz rasplavlennoy evtektiki svinets-magniy [Self-organizing carbonitride coating on steel from molten lead-magnesium eutectic]. Trudy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Innovatsionnye proekty i tekhnologii yadernoy energetiki” [Proc. Int. Sci. and Techn. Conf. "Innovative Projects and Technologies of Nuclear Energy"]. Moscow, 2012, pp. 174–182.
12. Orlova E.А., Kryuchkov E.А., Komyshnyj V.N., Zagrebaev S.А., Zhmurin V.G., Kotovskij N.А., Zasorin I.I., Solomatin А.E., Volov А.N., Vorob'ev N.V., Tolmachev D.V., Sannikova Z.O., Zajtsev P.А. Zhidkometallicheskiy podsloy s antikorrozionnymi svoystvami dlya tvelov s nitridnym toplivom [Liquid metal sublayer with anticorrosion properties for fuel elements with nitride fuel]. Voprosy atomnoy nauki i tekhniki. Seriya: Materialovedenie i novye materialy – Problems of atomic science and technology. Series: Materials Science and New Materials, 2015, no. 1(80), pp. 80–88.
13. Orlova E.А, Аgafonov V.R., Аlekseev V.V., Аrakcheev А.А., Vorob'ev N.V., Zhmurin V.G., Zagrebaev S.А., Zasorin I.I., Kryuchkov E.А., Orlov M.А., Solomatin А.E. Sinergetika sistemy konstruktsionnye materialy – splavy zhidkikh metallov [Synergetics of the system structural materials – alloys of liquid metals]. Trudy regional'nogo konkursa nauchnykh proektov v oblasti estestvennykh nauk [Proceedings of the regional competition of scientific projects in the field of natural sciences]. Kaluga, 2017, pp. 272–281.
14. Orlova E.А., Kruglov А.B., Chuvaev D.V., Struchalin P.G., Zagrebaev S.А., Zhmurin V.G. Teplovye kharakteristiki tvehla so svintsovo-magnievym podsloem [Thermal characteristics of a fuel rod with a lead-magnesium sublayer]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constans, 2016, no. 4, pp. 95–100.
15. Kruglov А.B., Kruglov V.B., Kharitonov V.S., Struchalin P.G., Orlova E.А., Zagrebaev S.А., Zhmu-rin V.G. Teploprovodnost' splavov Pb-Mg v diapazone temperatur 300–650 °C [Thermal conductivity of Pb-Mg alloys in the temperature range 300–650 °С]. Trudy naucheno-tekhnicheskoy konferentsii “Teplofizika reaktorov novogo pokoleniya. Teplofizika-2015” [Proc. Sci. and Techn. Conf. “Thermophysics of new generation reactors. Thermophysics-2015 "]. Obninsk, 2015, pp. 28–29.
16. Kruglov A.B., Kruglov V.B., Struchalin P.G., Haritonov V.S., Orlova E.A., Zagrebaev S.A., Zhmurin V.G. Teploprovodnost' splavov Pb-Mg-Zr i termicheskoe soprotivlenie granitsy kontakta splavov i stali EP-823 v diapazone temperatur 300–900 °C [Thermal conductivity of Pb-Mg-Zr alloys and thermal resistance of the contact boundary of alloys and steel EP-823 in the temperature range 300–900 °C]. Kratkie soobshcheniya po fizike Fizicheskogo instituta im. P.N. Lebedeva Rossiyskoy Akademii Nauk – Brief Communications on Physics of the Physics Institute named after P.N. Lebedev Russian Academy of Sciences, 2016, vol. 43, no. 10, pp. 20–25.
17. Kramerov А.Ya., Shevelev Ya.V. Inzhenernye raschety yadernykh reaktorov [Engineering calculations of nuclear reactors]. Moscow, Energoatomizdat Publ., 1980.
18. Rogozkin B.D., Bibilashvili Yu.K., Kazennov Yu.I. et al. Predvaritel'noe eksperimental'noe obosnovanie konstruktsii tvela s mononitridnym toplivom i svintsovym podsloem dlya reaktora BREST [Preliminary experimental substantiation of the design of a fuel rod with mononitride fuel and a lead sublayer for the BREST reactor]. Trudy mezhdunarodnoy konferentsii "Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh" [Proc. Int. Conf. "Heavy liquid metal coolants in nuclear technology"]. Obninsk, 1998, vol. 2, pp. 458–466.
19. Naumov V.V., Sila-Novitskij А.G., Smirnov V.S. et al. Trebovaniya k aktivnoy zone reaktorov BREST [Requirements for the core of BREST reactors]. Trudy mezhdunarodnoy konferentsii „Tyazhelye zhidkometallicheskie teplonositeli v yadernykh tekhnologiyakh” [Proc. Int. Conf. "Heavy liquid metal coolants in nuclear technology"]. Obninsk, 1998, vol. 2, pp. 511–520.
20. Rogozkin B.D., Stepennova N.M., Proshkin А.А. Mononitridnoe toplivo dlya bystrykh reaktorov [Mononitride fuel for fast reactors]. Atomnaya energiya – Atomic Energy, 2003, vol. 95, no. 3, pp. 208–221.
21. Bauer A. Nitride Fuels: Properties and Potentials. Journal Reactor Technology, 1972, vol. 15, no. 2, pp. 87.
22. Kirillov P.L., Terent'eva M.I., Deniskina N.B. Teplofizicheskie svoystva materialov yadernoy tekhniki [Thermophysical properties of materials of nuclear engineering]. Moscow, IzdАt Publ., 2007. 360 p.
23. Dolgodvorov A.P. Modelirovanie povedeniya produktov deleniya v nitridnom toplive. Diss. kand. tekhn. nauk [Modeling the behavior of fission products in nitride fuel. Cand. techn. sci. diss.]. Moscow, 2017.
24. Shaiu B.J, Wu P.C.S., Chiotti P. Thermodynamic properties of the double oxides of Cr, Ni and Fe. Journal of Nuclear Materials, 1977, vol. 67, pp. 13–23.