Belozerova A.R., Belozerov S.V., Shamardin V.K.
State Scientific Center — Research Institute of Atomic Reactors, Dimitrovgrad, Russia
The effects of nuclear transmutation in zirconium alloys are considered. The calculated scheme of
transmutation of elements in alloys of the system [Zr + x% Nb + y% Mo] is determined. Numerical
estimates of the molybdenum content in zirconium alloys of various compositions were carried out
during irradiation in research (SM-3, BOR-60) and power (VVER-1000, PWR) reactors.
The dynamics of the accumulation of molybdenum during irradiation in the SM reactor and the subsequent
exposure of the samples for one year in standard zirconium alloys Zr + 1% Nb, Zr + 2.5% Nb and
for the proposed initial compositions Zr + 1% Nb + 0.5% Mo were estimated Zr + 2.5% Nb + 0.5% Mo.
Reactor irradiation leads to a significant accumulation of molybdenum in the Zr + 2.5% Nb alloy
as a result of nuclear reactions: the molybdenum concentration increases to about 0.7 % with an increase
in neutron fluence (E> 0.1 MeV) to 1&mult;1023 cm–2 at irradiation in a research reactor SM.
The dynamics of the effects of nuclear transmutation of zirconium upon irradiation in the active
zone of research (SM-3, BOR-60) and power (VVER-1000, PWR) reactors is estimated. The Zr element
transmutes no more than 10 % in 100 years of exposure. The accumulation of molybdenum over
the same time can be up to 104 ppm (appm).
The results of the intellectual analysis of the calculations performed with multidimensional analysis
based on OLAP of the multidimensional data space of the database provide knowledge in the form
of classifications and confirm the need to develop zirconium alloys with additional doping with molybdenum,
which can provide optimal physicomechanical properties, in particular, radiation growth
characteristics, as well as acceptable level of nuclear-physical and corrosive properties.
1. Tsykanov V.A., Davydov E.F., Kuprienko V.A., Shamardin V.K., Pokrovsky A.S., Kobylyansky G.P.,
Kosenkov V.M., Goncharenko Yu.D. Izmenenie razmerov izdeliy iz tsirkonievykh splavov,
obluchennykh v reaktore SM-2 do bol'shogo flyuensa [Resizing articles of zirconium alloys irradiated in
the SM-2 reactor to a large fluence]. Atomnaya energiya – Atomic Energy, 1983, vol. 55, no. 4,
pp. 211-214. (in Russian)
2. Kobylyansky G.P., Shamardin V.K., Stukalov A.I. Dimensional, structural-phase changes and swelling
of materials under irradiation. VANT. Seriya: Fizika radiatsionnykh povrezhdeniy i radiatsionnoe materialovedenie
– PAST. Series: Physics of radiation damage and radiation materials science, 1990,
vol. 53, no. 2, pp. 32-34. (in Russian)
3. Kobylyansky G.P., Shamardin V.K., Rogozyanov A.Ya. Osobennosti vliyaniya reaktornogo oblucheniya
na svoystva i povedenie splavov tsirkoniya [Features of the effect of reactor irradiation on the properties
and behavior of zirconium alloys]. Trudy 6 Rossiyskoy konf. po reaktornomu materialovedeniyu
[Proc. 6 Russian conf. Reactor Material Science]. Dimitrovgrad, 2000, vol. 2, part 1, pp. 303-322.
4. Olander D., Motta A. Light Water Reactor Materials. Journal of Nuclear Materials, 2011, vol. 12,
pp. 20.
5. Kearns J.J., Woods C.R. Effect of texture, grain size and cold work on the precipitation of oriented hydrides
in Zircaloy tubing and plate. Journal of Nuclear Materials, 1966, vol. 20, pp. 241.
6. Garner G.L., Mardon J.P. Performance of Alloy M5 in a High Duty U.S. Reactor. Nuclear Engineering
International, 2002, vol. 36.
7. Kirichenko V.G., Azarenkov N.A. Yaderno-fizicheskoe metallovedenie splavov tsirkoniya [Nuclearphysical
metallurgy of zirconium alloys]. Kharkov, Kh.NU named after V.N. Karazin Publ., 2012.
336 p.
8. Kirichenko V.G., Kirdin A.I. Modeling of nuclear transmutation effects and their influence on the composition
of intermetallic compounds in zirconium alloys. Visnik KhNU. Ser. fizichna "Yadra, chastinki,
polya" - Visnik KhNU. Ser. physical "Nuclei, particles, fields", 2006, vol. 744, no. 3 (3), pp. 66-74.
(in Russian)
9. VVER-1000. Available at: https://ru.wikipedia.org/wiki/ВВЭР-1000 (accessed 08/12/2019). (in Russian)
10. PWR. Available at: http://energetika.in.ua/ru/books/book-4/part-1/section-2/2-4/2-4-1 (accessed
11.11.2019). (in Russian)
11. Reactor and materials science complexes of JSC SSC RIAR. Fast neutron reactor BOR-60. Available at:
http://www.niiar.ru/?q=node/101 (accessed 11.11.2019). (in Russian)
12. Reactor and materials science complexes of JSC SSC RIAR. SM high-flow research reactor. Available
at: http://www.niiar.ru/node/102 (accessed 12.08.2019). (in Russian)
13. Sevastyanov V.D., Koshelev A.S., Maslov G.N. Characteristics of neutron fields. Sources of instant
fission neutrons, 14 MeV neutron generators, research and energy reactors, neutron conversion converters:
a reference book, ed. V.D. Sevastyanova. Mendeleevo, FSUE "VNIIFTRI" Publ., 2014. 30 p.
(in Russian)
14. Belozerova A.R. Algoritmizacija zadachi jadernoj transmutacii [Algorithmization of the nuclear transmutation
problem]. Sbornik tezisov foruma «Nejtronno-fizicheskie problemy atomnoj jenergetiki» (Nejtronika-
2012), Obninsk, 2012, pp. 50-52.
15. Belozerova A.R. Reguljarnye vyrazhenija v raschjotah jadernoj trancmutacii [Regular Expressions in
Nuclear Transmutation Calculations]. VANT. Series: matematicheskoe modelirovanie fizicheskih processov
– PAST. Series: mathematical modeling of physical processes. 2012. № 3. Pp. 71-78.
16. Shimansky G.A. TRANS_MU computer code for computation of transmutant formation kinetics in advanced
structural materials for fusion reactors. Journal of Nuclear Materials, 1999, p. 271-272.
17. PREPRO2017. PREPRO – Code System Download. International Atomic Energy Agency – Nuclear
Data Section. Vienna, Austria. Available at: https://www-nds.iaea.org/public/endf/prepro2017/ (accessed
21.03.2019).
18. International Atomic Energy Agency, Division of Physical and Chemical Sciences, Nuclear Data Section.
Vienna, Austria, 1998. Available at: https://www-nds.iaea.org/fendl20/ (accessed 21.03.2019).
19. Chadwick M.B., et al. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear
Science and Technology.Nuclear Data Sheets, 2006, vol. 107, no. 12, pp. 2931-3060. Available at:
http://www.nndc.bnl.gov/endf/b7.0/download.html (accessed 21.03.2019).
20. Belozerova A.R., Belozerov S.V., Shamardin V.K. On the problem of modeling of nuclear transmutation
effects upon investigation of the phase composition of irradiated austenitic steels. The Physics of
Metals and Metallography, 2018, vol. 119, no. 5, pp. 413-420.
21. Belozerova A.R., Shimanskii G.A., Belozerov S.V. Nuclear transmutation in steels. The Physics of Metals
and Metallography, 2009, vol. 107, no. 5, pp. 492-501.
22. Belozerova A.R., Belozerov S.V., Shimansky G.A., Zhemkov I.Yu. Yadernaya transmutatsiya v stali
X18N10T [Nuclear transmutation in steel Х18Н10Т]. Trudy X Rossiyskoy konferentsii po reaktornomu
materialovedeniyu – Proc. X Russian Conference on Reactor Materials Science. Dimitrovgrad, 2013.