Korobeinikov V.V.1, Kolesov V.V.2, Terekhova A.M.2, Karazhelevskaya Yu.E.2
1A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
2Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
Minor actinides (MA) — primarily, isotopes of neptunium, americium, and curium - attract particular
attention due to their long-term radiotoxicity. Measures to reduce the increase in the number of minor
actinides have not yet been taken their total number in the world is growing, and will reached more
than 200 tons by 2020. Note that minor actinides, as well as nuclides formed as a result of neutron
capture, have the ability to share, so it is necessary to investigate whether the nuclear reactor can
work if only they are used as fuel? The paper examined the possibility of using fuels from MA alone in
reactors without uranium or plutonium. From the results of comparing the fission and capture cross
sections, it follows that fuel in the form of Am or Np-237 can only use a fast neutron reactor, since in
the thermal and intermediate spectra the capture cross section significantly exceeds the fission cross
section. The results of calculations of the active zones of a model fast reactor with fuel from one americium
or neptunium-237 demonstrated the high speed of their transmutation and burning out.
1. Use of Fast Reactors for Actinide Transmutation. Proceedings of a Specialists Meeting. Obninsk, 1992,
p. 125. IAEA-TECDOC-693.
2. Matveev V.I., Ivanov A.P., Efimenko E.M. Concept of Specialized Fast Reactor for Minor Actinide
Burning. Obninsk, 1992, p. 114. IAEA-TECDOC-693.
3. Guy E.V., Ignatyuk A.V., Rabotnov N.S., Shubin Yu.N. Kontseptsiya obrashcheniya s dolgozhivushchimi
yadernymi otkhodami [The concept of managing long-lived nuclear waste]. Izvestiya vuzov.
Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 1994, no. 1, pp. 17-21.
4. Ganev I.H., Lopatkin A.V., Orlov V.V. Geterogennaya transmutatsiya Am, Cm, Np v aktivnoy zone
reaktora tipa BREST [Heterogeneous transmutation of Am, Cm, Np in the reactor core of the BREST
type]. Atomnaya energiya – Atomic Energy, 2000, vol. 89, no. 5, pp. 362-365.
5. Gerasimov A.S., Kiselev G.V. Nauchno-tekhnicheskie problemy sozdaniya elektroyadernykh ustanovok
dlya transmutatsii dolgozhivushchikh radioaktivnykh otkhodov i odnovremennogo proizvodstva energii
(rossiyskiy opyt) [Scientific and technical problems of creating electro-nuclear installations for the
transmutation of long-lived radioactive waste and simultaneous energy production (Russian experience)].
Fizika elementarnykh chastits i atomnogo yadra – Physics of Elementary Particles and the Atomic
Nucleus, 2001, vol. 32, no. 1, pp. 188.
6. Popov V.E., Strebkov Yu.S., Sysoev A.G., Kuteev B.V., Shpansky Yu.S. Gibridnyy blanket termoyadernogo
istochnika neytronov i ego neytronno-fizicheskie kharakteristiki. Innovatsionnye proekty i
tekhnologii yadernoy energetiki [Hybrid blanket of a thermonuclear neutron source and its neutronphysical
characteristics. Innovative projects and technologies of nuclear energy]. Trudy V Mezhdunarodnoy
nauchno-tekhnicheskoy konferentsii [Proc. V Int. Sci. and Techn. Conf.]. Moscow, 2018,
pp. 215-217.
7. Korobeynikov V.V., Kolesov V.V., Terekhova A.M., Karazhelevskaya Yu.E. Issledovaniya
vozmozhnosti vyzhiganiya i transmutatsii Am-241 v reaktore s ameritsievym toplivom [Investigation of
the possibility of burning and transmutation of Am-241 in a reactor with americium fuel]. Preprint FEI-
3284 – Preprint IPPE-3284. Obninsk, 2018. 14 p.
8. OECD Nuclear Energy Agemcy, Accelerator-driven System (ADS) and Fast Reactors (FR) in Advanced
Nuclear Fuel Cycles. Paris, France, 2002.
9. Fabienne Delage et al. Advanced fuel developments for an industrial Accelerator Driven System Prototype.
Proc. Global 2009. Paris, France, 2009.
10. Adamov E.O., Ganev I.Kh., Lopatkin A.V., Muratov V.G., Orlov V.V. Transmutatsionnyy toplivnyy
tsikl v krupnomasshtabnoy yadernoy energetike Rossii [Transmutation fuel cycle in large-scale nuclear
energy in Russia]. Moscow, GUP NIKIET Publ., 1999. 273 p.
11. Rene Sanchez, David Loaiza, Robert Kimpland, David Hayes, Charlene Cappiello, Mark Chadwick.
Criticality of a 237Np Sphere 2. Nuclear Science and Engineering, 2008, vol. 158, no. 1, pp. 1—14.
12. Kazuo Minato et al. Recent Research and Development on Partitioning and Transmutation by “Doublestrata
Fuel Cycle Concept” in JAEA. Proc. Global 2009. Paris, France, 2009.
13. Kiefhaber E., Garnier J.C. Transmutation of Minor Actinides in CAPRA 4/94 Core. Proc. 2nd International
CAPRA Seminar. Karlsruhe, 1994.
14. Takanori Sugawara et al. Recent Activities for Accelerator Driven System in JAEA. Proc. Global 2009.
Paris, France, 2009.
15. Fabienne Delage et al. Advanced fuel developments for an industrial Accelerator Driven System Prototype.
Proc. Global 2009. Paris, France, 2009.
16. Merle-Lucotte E. Optimizing the Burning Efficiency and the Deployment Capacities of the Molten Salt
Fast Reactor. Proc. Global 2009. Paris, France, 2009.
17. Ayodeji B. Alajo et al. Utilization of Transuranics as Fuel Component in VHTR Systems: The Back-end
Considerations. Proc. Global 2009. Paris, France, 2009.
18. Technical features to enhance proliferation resistance of nuclear energy systems, IAEA, Vienna,
2010. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1464_web.pdf (accessed
12.09.2019).
19. IAEA Advisory material for the IAEA regulations for the safe transport of radioactive material, safety
Guide no. TS-G-1.1, IAEA, Vienna, 2008. Available at: https://wwwpub.
iaea.org/mtcd/publications/pdf/pub1325_web.pdf (accessed 12.09.2019).
20. Ivanov V.K., Chekin S.Yu., Menyailo A.N., Maksyutov M.A., Tumanov K.A., Kashcheeva P.V., Lovachev
S.S., Adamov E.O., Lopatkin A.V. Sravnitel'nyy analiz urovney “radiotoksichnosti” otdel'nykh radionuklidov.
OYaT reaktorov BREST i VVER pri razlichnykh vremenakh vyderzhki na osnove sovremennykh
modeley "doza-effekt" MKRZ [Comparative analysis of the levels of “radiotoxicity” of individual
radionuclides. SNF of BREST and VVER reactors at various holding times on the basis of
modern "dose-effect" ICRP models]. Radiatsiya i risk (Byulleten' Natsional'nogo radiatsionnoepidemiologicheskogo
registra – Radiation and risk (Bulletin of the National Radiation and Epidemiological
Register), 2018, vol. 27, no. 4, pp. 8—27.
21. Kazansky Yu.A., Romanov M.I. Transmutatsiya malykh aktinidov v spektre neytronov reaktora na
teplovykh neytronakh [Transmutation of small actinides in the neutron spectrum of a thermal neutron
reactor]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering,
2014, no. 2, pp. 140—146.
22. Alekseev P., Vasiliev А., Mikityuk К., Subbotin S., Fomichenko P., Schepetina Т. Lead-bismuth reactor
RBEC: optimization of conceptual decisions. Preprint IAE-6229/4. Moscow, 2001.
23. Jaakko Leppanen. PSG2/SERPENT – A Continious Energy Monte-Carlo Reactor Physics Burnup
Calculation Code, – Helsinki: VTT Technical Research Centre of Finland, 2015. Available at:
http://montecarlo.vtt.fi/download/Serpent_manual.pdf (accessed 12.09.2019).
24. X-5 Monte Carlo Team, "MCNP – A General Monte Carlo N-Particle Transport Code", version 5, volume
II: user’s guide, appendix B, April 2003. Available at: https://mcnp.lanl.gov/pdf_files/la-ur-03-
1987.pdf (accessed 12.09.2019).