Sorokin A.P., Gulevich A.V., Klinov D.A., Kuzina Yu.A., Kamaev A.A.,
Ivanov A.P., Alekseev V.V., Morozov A.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The presented results of neutron-physical, thermophysical, and technological studies have shown that
it is possible in principle to provide the required parameters of a high-temperature (900–950 °С) reactor
installation with a 600 MW reactor (heat) with a sodium coolant for hydrogen production and
other innovative applications based on one of thermochemical cycles or high temperature electrolysis
with a high coefficient of thermal use of electricity. The relative small size, type of coolant, and the
choice of fissile material and structural materials make it possible to create a reactor with intrinsic
properties that provide enhanced nuclear and radiation safety. The possibilities of using heatresistant
radiation-resistant structural materials and using the proposed technology of hightemperature
sodium coolant at a high hydrogen concentration are discussed. The features of the behavior
of a high-temperature complex multicomponent heterogeneous system "sodium coolant – impurities
– structural (technological) materials – protective gas" are analyzed, which are associated
with an exponential temperature dependence of constants characterizing heat and mass transfer processes
(diffusion, permeability, solubility, absorption rate, equilibrium gas pressures, etc.). It has
been shown that the technology system for high-temperature sodium coolant differs significantly from
systems at modern nuclear power plants. With an increase in the intensity of hydrogen sources coming
from the third circuit to the second, compared with BN-600 NPPs by two to three orders of magnitude,
the condition for its implementation is to increase the hydrogen concentration in sodium by
two to three orders of magnitude compared to modern nuclear power plants in combination with the
removal of hydrogen from sodium by evacuation through membranes from vanadium or niobium.
1. International Atomic Energy Agency, Hydrogen as an Energy Carrier and its Production by Nuclear
Power: IAEA–TECDOC–1085, IAEA, Vienna, 1999.
2. Morozov A.V., Sorokin A.P. Methods for producing hydrogen and prospects for using a hightemperature
fast sodium reactor for its production. Proc. 21st Conference on Structural Mechanics in
Reactor Technology (SMIRT – 21). Kalpakkam, India, 2011.
3. Innovation in Nuclear Energy Technology. NEA, N. 6103, OECD Nuclear Energy Agency, 2007.
4. Albitskaya E.S. Razvitie yaderno-energeticheskikh sistem [The development of nuclear energy systems].
Atomnaya tekhnika za rubezhom – Nuclear Technology Abroad, 2013, no. 11, pp. 3-16.
5. Degtyarev A.M., Kolyaskin O.E., Myasnikov A.A. et al. Zhidkosolevoy podkriticheskiy reaktorszhigatel'
transplutonovykh aktinoidov [Subcritical liquid-salt reactor-burner of transpluton actinides].
Atomnaya energiya – Atomic Energy, 2013, vol. 114, no. 4, pp. 183-188.
6. Goverdovsky A.A., Ovcharenko M.K., Belinsky V.S. et al. Elektroyadernyy podkriticheskiy blanket na
modul'nom printsipe postroeniya aktivnoy zony s zhidkometallicheskimi rasplavami delyashchikhsya
ftoridov urana (UF4) i plutoniya (PUF3) vo ftoridnom rastvore FLINAK [Electronuclear subcritical
blanket based on the modular principle of constructing a core with liquid metal melts of fissile uranium
fluorides (UF4) and plutonium (PUF3) in FLINAK fluoride solution]. Trudy konferentsii "Teplofizika
reaktorov na bystrykh neytronakh (Teplofizika-2013)" [Proc. Conf. "Thermophysics of fast neutron reactors
(Thermophysics 2013")]. Obninsk, 2013, pp. 10-13.
7. Sorokin A.P., Kuzina Yu.A., Trufanov A.A., Kamaev A.A., Orlov Yu.I., Alekseev V.V., Grabezhnaya
V.A., Zagorulko Yu.I. Aktual'nye problemy teplofiziki reaktorov na bystrykh neytronakh [Actual
problems of thermophysics of fast neutron reactors]. Teploenergetika – Thermal Engineering, 2018,
no. 10, pp. 60-69.
8. Asmolov V.G., Zrodnikov A.V., Solonin M.I. Innovatsionnoe razvitie yadernoy energetiki Rossii [Innovative
development of nuclear energy in Russia]. Atomnaya energiya – Atomic Energy, 2007, vol.
103. no. 3, pp. 147-155.
9. Goverdovsky A.A., Kalyakin S.G., Rachkov V.I. Al'ternativnye strategii razvitiya yadernoy energetiki v
XXI veke [Alternative strategies for the development of nuclear energy in the 21st century]. Teploenergetika
– Thermal Engineering, 2014, no. 5, pp. 3-10.
10. Ponomarev-Stepnoy N.N. Dvukhkomponentnaya yadernaya energeticheskaya sistema s zamknutym
yadernym toplivnym tsiklom na osnove BN i VVER [A two-component nuclear energy system with a
closed nuclear fuel cycle based on BN and VVER]. Atomnaya energiya – Atomic Energy, 2016, vol.
120, no. 4, pp. 183-191.
11. Sorokin A.P., Efanov A.D., Zhukov A.V., Bogoslovskaya G.P., Sorokin G.A., Matyukhin N.M. Teplogidravlicheskie
issledovaniya po probleme povysheniya vygoraniya yadernogo goryuchego v reaktorakh
na bystrykh neytronakh [Thermohydraulic studies on the problem of increasing burnup of nuclear fuel
in fast reactors]. Teploenergetika – Thermal Engineering, 2007, no. 3, pp. 9-16.
12. Poplavsky V.M., Zabudko A.N., Petrov E.E. et al. Fizicheskie kharakteristiki i problemy sozdaniya natrievogo
bystrogo reaktora kak istochnika vysokopotentsial'noy teplovoy energii dlya proizvodstva
vodoroda i drugikh vysokotemperaturnykh tekhnologiy [Physical characteristics and problems of creating
a sodium fast reactor as a source of high potential thermal energy for the production of hydrogen
and other high-temperature technologies]. Atomnaya energiya – Atomic Energy, 2009, vol. 106, no. 3,
pp. 129-134.
13. Sorokin A.P., Kozlov F.A. Status and objectives of research on high-temperature sodium coolant technology.
Proc. 21st Conference on Structural Mechanics in Reactor Technology (SMIRT – 21). Kalpakkam,
India, 2011.
14. Kalyakin S.G., Kozlov F.A., Sorokin A.P., Bogoslovskaya G.P., Ivanov A.P., Konovalov M.A., Morozov
A.V., Stogov V.Yu. Neytronno-fizicheskie i teplofizicheskie issledovaniya v obosnovanie vysokotemperaturnoy
yadernoy energotekhnologii s reaktorom na bystrykh neytronakh s natrievym teplonositelem
dlya proizvodstva vodoroda [Neutron-physical and thermophysical studies in support of
high-temperature nuclear energy technology with a fast neutron reactor with a sodium coolant for hydrogen
production]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power
Engineering, 2016, no. 3, pp. 104-115.
15. Sorokin A.P., Gulevich A.V., Kamaev A.A., Kuzina Yu.A., Ivanov A.P., Alekseev V.V., Morozov A.V.
Issledovaniya v obosnovanie vysokotemperaturnoy yadernoy energotekhnologii s reaktorom na bystrykh
neytronakh s natrievym teplonositelem dlya proizvodstva vodoroda i drugikh innovatsionnykh
primeneniy [Studies in support of high-temperature nuclear energy technology with a fast neutron reactor
with a sodium coolant for the production of hydrogen and other innovative applications]. Trudy 11
Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii "Bezopasnost', effektivnost' i ekonomika atomnoy
energetiki" [Proc. 11th Int. Sci. and Techn. Conf. "Safety, Efficiency and Economics of Nuclear Energy"
(MNTK-2018)]. Moscow, 2018.
16. Kozlov F.A., Sorokin A.P., Alekseev V.V., Konovalov M.A. Tekhnologiya vysokotemperaturnogo natrievogo
teplonositelya v yadernykh energeticheskikh ustanovkakh dlya vodorodnoy energetiki [Technology
of high-temperature sodium coolant in nuclear power plants for hydrogen energy]. Teploenergetika
– Thermal Engineering, 2014, no. 5, pp. 31-39.
17. Kozlov F.A., Sorokin A.P., Alekseev V.V., Konovalov M.A. The high temperature sodium coolant
technology in nuclear power installations for hydrogen power engineering [The high temperature sodium
coolant technology in nuclear power installations for hydrogen power engineering]. Teploenergetika
– Thermal Engineering, 2014, vol. 61, no. 5, pp. 348-356.
18. Kalyakin S.G., Kozlov F.A., Sorokin A.P., Alekseev V.V., Bogoslovskaya G.P., Ivanov A.P.,
Konovalov M.A., Morozov A.V., Orlova E.A., Stogov V.Yu. Vysokotemperaturnaya yadernaya energotekhnologiya
na osnove bystrykh reaktorov s natrievym teplonositelem dlya proizvodstva vodoroda
[High-temperature nuclear energy technology based on fast reactors with sodium coolant for hydrogen
production]. Atomnaya energiya – Atomic Energy, 2014, vol. 116, no. 4, pp. 194-204.
19. Pakhomov V.V. Reaktory na bystrykh neytronakh ms natrievym teplonositelem – RBN. Mashinostroenie
[Fast neutron reactors with sodium coolant – RBN. Mechanical Engineering. Volume IV – 25: Mechanical
Engineering of Nuclear Engineering]. Moscow, Mashinostroenie Publ., 2005. Pp. 584-619.
20. Kazanskiy Yu.A., Troyanov M.F., Matveev V.I., Evseev A.Ya., Zvonarev A.V., Kiryushin A.I., Vasiliev
B.A., Belov S.P., Matveenko I.P., Kulabukhov Yu.S., Cherny V.A., Dvusherstnov V.G., Bakov
A.T., Ivanov A.P., Tyutyunnikov P.L., Pshakin G.M. Issledovanie fizicheskikh kharakteristik
reaktora BN-600 [Investigation of the physical characteristics of the BN-600 reactor]. Atomnaya energiya
– Atomic Energy, 1983, vol. 55, no. 1, pp. 9-14.
21. LMFR core and heat exchanger thermohydraulic design: Former USSR and present Russian approaches.
IAEA-TECDOC-1060, January, 1999, 305 p.
22. Rachkov V.I., Sorokin A.P., Zhukov A.V. eplogidravlicheskie issledovaniya zhidkometallicheskikh teplonositeley
v yadernykh energeticheskikh ustanovkakh [Thermohydraulic studies of liquid metal coolants
in nuclear power plants]. Teplofizika vysokikh temperature - Thermophysics of high temperatures,
2018, no. 1, pp. 121-136.
23. Tikhomirov B.B., Poplavsky V.M. Vliyanie statisticheskikh kharakteristik puchka tvelov TVS na
otsenku temperaturnogo rezhima aktivnoy zony bystrogo natrievogo reaktora [The influence of the statistical
characteristics of a bundle of fuel assemblies of fuel assemblies on the assessment of the temperature
regime of the active zone of a fast sodium reactor]. Izvestiya vuzov. Yadernaya energetika –
Proseedings of Universities. Nuclear Power Engineering, 2014, no. 2, pp. 128-139.
24. Zhukov A.V., Sorokin A.P., Ushakov P.A. et al. Teplofizicheskoe obosnovanie temperaturnykh
rezhimov TVS bystrykh reaktorov s uchetom faktorov peregreva (temperaturnye polya, faktory peregreva)
[Thermophysical substantiation of temperature conditions of fuel assemblies of fast reactors taking
into account overheating factors (temperature fields, overheating factors)]. Preprint FEI-1778 –
Preprint IPPE-1778. Obninsk, 1986.
25. Koltsov A.G., Roshchupkin V.V., Lyakhovitsky M.M., Sobol N.L., Pokrasin M.A. Eksperimental'noe
issledovanie fiziko-mekhanicheskikh svoystv konstruktsionnoy stali EP-912 [An experimental study
of the physicomechanical properties of structural steel EP-912]. Available at:
http://archive.nbuv.gov.ua/portal/soc_gum/vsunu/2011_12_1/ Kolcov.pdf (accessed 24.10.2019).
26. Bekkerev I.V. Metally i splavy: marki i khimicheskiy sostav [Metals and alloys: grades and chemical
composition]. Ulyanovsk, UlSTU, 2007. Available at http://www.bibliotekar.ru/spravochnik-
73/index.htm (accessed 24.10.2019).
27. Levich V.G. Fiziko-khimicheskaya gidrodinamika [Physicochemical hydrodynamics]. Moscow, Fizmatgiz
Publ., 1959.
28. Nevzorov B.A., Zotov V.V., Ivanov V.A., Starkov O.V., Kraev N.D., Umnyashkin E.B., Soloviev V.A.
Korroziya konstruktsionnykh materialov v zhidkikh shchelochnykh metallakh [Corrosion of structural
materials in liquid alkali metals]. Moscow, Atomizdat Publ., 1977.
29. Beskorovayny N.M., Ioltukhovsky A.G. Konstruktsionnye materialy i zhidkometallicheskie teplonositeli
[Construction materials and liquid metal coolants]. Moscow, Energoatomizdat Publ., 1983.
30. Kraev N.D. et al. Korroziya i massoperenos konstruktsionnykh materialov v natrievom i natriykalievom
teplonositelyakh [Corrosion and mass transfer of structural materials in sodium and sodiumpotassium
coolants]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear
Power Engineering, 1999, no. 3, pp. 40-48.
31. Zhang J., Marcille T.F., Kapernick R. Theoretical Analysis of Corrosion by Liquid Sodium and Sodium-
Potassium Alloys. Corrosion, 2008, vol. 64, no. 7, pp. 563-573.
32. Kozlov F.A., Konovalov M.A., Sorokin A.P., Alekseev V.V. Osobennosti massoperenosa tritiya v vysokotemperaturnoy
YaEU s natrievym teplonositelem dlya proizvodstva vodoroda [Peculiarities of tritium
mass transfer in a high-temperature nuclear power plant with sodium coolant for hydrogen production].
Trudy konferentsii "Teplofizika reaktorov na bystrykh neytronakh (Teplofizika-2013)" [Proc. Conf.
"Thermophysics of fast neutron reactors (Thermophysics-2013)"]. Obninsk, 2013. Pp. 197-198.
33. Kuznetsov I.A., Poplavsky V.M. Bezopasnost' AES s reaktorami na bystrykh neytronakh [Safety of
NPPs with fast neutron reactors]. Moscow, IzdAt Publ., 2012.
34. Status of liquid metal cooled fast reactor technology. IAEA-TECDOC-1083, IAEA, 1999.
35. Sorokin A.P. Teplogidravlicheskie issledovaniya bezopasnosti YaEU s reaktorami na bystrykh neytronakh
[Thermohydraulic safety studies of nuclear power plants with fast neutron reactors]. Teploenergetika
– Thermal Engineering, 2007, no. 12, pp. 29-36.
36. Fromm E., Gebhart E. Gazy i uglerod v metallakh [Gases and carbon in metals]. Moscow, Metallurgy
Publ., 1980.
37. Shepelev S.F., Rogozhkin S.A., Poplavsky V.M., Rachkov V.I., Zaryugin D.G., Sorokin A.P.,
Shvetsov Yu.E. Raschetno-eksperimental'noe obosnovanie proektnoy sistemy avariynogo otvoda tepla
BN-1200 [Calculation and experimental justification of the design system for emergency heat removal
BN-1200]. Atomnaya energiya – Atomic Energy, 2014, vol. 116, no. 4, pp. 222-228.
38. Opanasenko A.N., Sorokin A.P., Zaryugin D.G., Trufanov A.A. Reaktor na bystrykh neytronakh: eksperimental'nye
issledovaniya teplogidravlicheskikh protsessov v razlichnykh rezhimakh raboty [Fast
neutron reactor: experimental studies of thermohydraulic processes in various operating modes]. Teploenergetika
– Thermal Engineering, 2017, no. 5, pp. 1-10.
39. Opanasenko A.N., Sorokin A.P., Zaryugin D.G., Trufanov A.A. Fast Reactor: an Experimental Study of
Thermohydraulic Processes in Different Operating Regimes. Thermal Engineering, 2017, vol. 64, no. 5,
pp. 336-344.
40. Loginov N.I., Mikheev A.S. O kontseptsii isparitel'no-kondensatsionnoy sistemy avariynogo raskholazhivaniya
bystrykh natrievykh reaktorov [On the concept of an evaporative-condensation system for
emergency cooling of fast sodium reactors. Trudy na otraslevoy konferentsii "Gidrodinamika i bezopasnost'
AES (Teplofizika–99)" [Proc. Conf. "Hydrodynamics and Safety of NPPs (Thermophysics –
99)"]. Obninsk, 1999, p. 220.