Sidorov N.M., Ivshin A.V., Fedorovich E.D.
Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
In given paper is discussed a theme of the providing of the biological shield of a container which is
intended for exportation from NPP spots the bloks of the irradiated graphite moderator of nuclear
reactors RBMK-1000 at a stage of such reactors decommission. With usage of the computer program
systems Microshield (MS) and MCC 3D has been performed a design of container’s biological shield.
This container can be used as for graphite blocks transportation, as for their storage.
Year 2018 was a final one for the first unit of Leyningradskay NPP with reactor RBMK-1000,
which has been under operation from 1973. The stop of this unit laid the beginning of step by step
process of decommissions of such type power reactors at our country territory.
For power reactors, in which as moderator of neutrons is used graphite, at ending of their service
time is necessary to remove it from NPP stop and to keep(store) it safely-before reprocessing on final
disposal.
For the transportation and for the safe storage of graphite blocks (GB) of irradiated graphite
moderator (IGM) it is necessary to develop special container, which will provide proper level of a
management with IGM at the spot of decommissioning unit, at a way to spot of IGM reprocessing
or/and its final disposal.
The structure of container should to satisfy to requirements of radiation protection, providing the
necessary level of a biological shield and also should to have proper strength characteristics and
ability to bear supposing dynamic loads without loss of integrity and without loss of hermetically.
The practical meaning of given work consists in the possibility of usage of its results by designing
and manufacturing of containers for transportation and storage of IGM.
The usage of such containers is actual by decommission process of nuclear power units with reactor
RBMK-1000, because such usage will allow to accelerate significantly this process and fulfill the
requirements of the ecological safety.
The usage in given work of the modern program systems of modeling of biological shield allows
to evaluate numerically shielding possibility of the structure materials, which could be used for the
biological shield of containers and allows to choose optimal option of loading of graphite blocks in
container.
In the work is presented information about positive properties of the high-strength cast iron with
spherical graphite inclusion as a perspective structural material for container’s body, which able to
provide high level of the ecological safety during the exploitation of containers for irradiated graphite
blocks.
1. Aleksandrov N.N., Radchenko M.V., Zubkov A.A. Sovremennyye sostoyaniya i perspektivy primeneniya
vysokoprochnogo chuguna s sharovidnym grafitom v atomnoy energetike [Current conditions
and prospects using of high-strength spherical graphite iron in nuclear energy]. Voprosy atomnoy nauki i
tekhniki. Seriya: Obespecheniye bezopasnosti AES – Problems of atomic science and technology. Series:
Safety Assurance of NPP, 2011, no. 30, pp. 105-111.
2. Dr. Wolfgang Steinwarz. Upakovochnyye komplekty i konteynery iz vysokoprochnogo chuguna dlya
khraneniya i zakhoroneniya RAO. Siempelkamp Nucleartechnik [Packing kits and containers of highstrength
spherical graphite iron for storage and disposal of radioactive waste. Moscow, AtomEco Publ.,
2013.
3. GOST 9238-2013. Gabarity zheleznodorozhnogo podvizhnogo sostava i priblizheniya stroyeniy [Construction
and rolling stock clearance diagrams]. Available at: http://docs.cntd.ru/document/1200107121
(accessed 19.11.2019).
4. Bylkin B.K., Davydova G.B., Krayushkin A.V., Shaposhnikov V.A. Radiatsionnyye kharakteristiki
obluchënnogo grafita posle okonchatel’nogo ostanova AES s RBMK [Computational estimates of the
radiation characteristics of irradiated graphite after final shutdown of a nuclear power plant with an
RBMK reactor]. Atomnaya energiya – Atomic Energy, 2004, vol. 97, no. 6, pp. 451-457.
5. Burlakov E.V., Davydova G.B., Zakharova L.N., Krayushkin A.V. Raschety radiatsionnykh kharakteristik
obluchennogo grafita reaktorov RBMK [Calculations radiation characteristics of irradiated graphite
RBMK]. Moscow, Kurchatov Institute Publ., 2017. 17 p.
6. Novoselov I.Yu., Makarevich S.V., Davydov E.Yu. Otsenka sostoyaniya radioaktivnykh mikroprimesey
v obluchennom grafite uran-grafitovykh yadernykh reaktorov [Assessment of state of radioactive impurities
in irradiated graphite of uranium-graphite nuclear reactor]. Trudy V Mezhdunarodnoy konferentsii
"Radioaktivnost’ i radioaktivnyye elementy v srede obitaniya cheloveka" [Proc. V Int. Conf. “Radioactivity
and radioactive elements in the human environment”]. Tomsk, 2016, pp. 465-468.
7. Tuktarov M.A., Andreyeva L.A., Romenkov A.A. Konditsionirovaniye reaktornogo grafita vyvodimykh
iz ekspluatatsii uran-grafitovykh reaktorov dlya tseley zakhoroneniya [The conditioning of the
graphite reactor of the decommissioned uranium-graphite reactors for the disposal]. Available at:
http://www.atomic-energy.ru/articles/2016/06/08/66585 (accessed 22.11.2019)
8. Simanovskiy V.M. Bezopasnost’ konservatsii i demontazha promyshlennykh yadernykh reaktorov. Diss.
kand. nauk [Safety of the conservation and dismantling of industrial nuclear reactors. Cand. sci. diss.].
St. Petersburg, 1998. 23 p.
9. Domashev E.D., Simanovskiy V.M. Vyvod iz ekspluatatsii uran-grafitovykh reaktorov [Decommissioning
of uranium-graphite reactors]. Promyshlennaya teplotekhnika – Industrial Heat Engineering, 1999,
vol. 21, no. 4-5, pp. 111-117.
10. Bushchev A.V., Verzilov Yu.M., Zubarev V.N. et al. Eksperimental’nyye issledovaniya radioaktivnoy
zagryaznennosti grafitovykh kladok reaktorov Sibirskogo khimicheskogo kombinata [Experimental
study of the radioactive contamination of graphite masonry in the commercial reactors at the Siberian
Chemical Combine]. Atomnaya energiya – Atomic Energy, 2002, vol. 92, no. 6, pp. 477-485.
11. Haritonova E.V., Sidorov N.M., Novikova O.V., Ivshin A.V. Analiz ekonomiko-ekologicheskikh
posledstviy vyderzhki obluchennogo grafita pri vyvode AES iz ekspluatatsii [Analysis of economic and
environmental consequences of exposure of irradiated graphite during decommissioning of nuclear
power plants]. Trudy Mezhdunar. nauch-prakt. konf. "Sovremennyye tekhnologii i ekonomika energetiki"
[Proc. Sci. and Prac. Conf. "Modern technologies and economics of energy"]. St. Petersburg, 2019,
pp.100-104.
12. NRB-99/2009. Normy radiatsionnoy bezopasnosti [Radiation safety standards]. Moscow, Publishing
house of standards, 2009. 86 p.
13. NP-053-16. Federal’nyye normy i pravila v oblasti ispol’zovaniya atomnoy energii “Pravila bezopasnosti
pri transportirovanii radioaktivnykh materialov” [Safety Rules for Transportation of Radioactive
Materials]. Moscow, Federal Service for Ecological, Technological and Nuclear Supervision, 2016.
174 p.
14. Kalyutik A.A., Fedorovich E.D., Pletnev A.A., Kuzin V.A., Anan’yev A.N. K voprosu o razrabotke
tekhnologiy obrashcheniya s obluchënnym grafitom i otrabotavshim yadernym toplivom pri vyvode iz
ekspluatatsii energoblokov AES s reaktorami tipa RBMK-1000 [On the question of the development of
technologies for management of irradiated graphite and spent nuclear fuel for the decommissioning of
nuclear power units with RBMK-1000]. Trudy Mezhdunar. nauch-prakt. konf. "Sovremennyye
tekhnologii i ekonomika energetiki" [Proc. Sci. and Prac. Conf. "Modern technologies and economics of
energy"]. St. Petersburg, 2019, pp. 84-86.
15. MicroShield – Radiation Software. Grove Software. Available at: https://www.radiationsoftware.com/
microshield (accessed 19.11.2019).
16. Bagayev K.A., Kozlovskiy S.S., Novikov I.E. Programma dlya imitatsionnogo trëkhmernogo modelirovaniya
sistem detektirovaniya i registratsii ioniziruyushchego izlucheniya na baze razvitogo graficheskogo
interfeysa [The program for simulation three-dimensional modeling of systems for detecting and
recording ionizing radiation whith developed graphical interface]. Apparatura i novosti radiatsionnykh
izmereniy – Instrumentation and radiation measurement news, 2007, no. 4, pp. 35-40.
17. Gataullin R.M., Davidenko N.N., Sviridov N.V. et al. Konteynery dlya radioaktivnykh otkhodov nizkogo
i srednego urovney aktivnosti: monografiya [Containers for radioactive waste low and medium activity
level: monograph]. Moscow, Logos Publ., 2012. 255 p.
18. Sorokin V.T., Demin A.V., Kashcheyev V.V., Iroshnikov V.V., Gataullin R.M., Medelyayev I.A., Peregudov
N.N., Sharafutdinov R.B. Konteynery dlya radioaktivnykh otkhodov nizkogo i srednego urovnya
aktivnosti [Containers for radioactive waste low and medium activity level]. Yadernaya i radiatsionnaya
bezopasnost’ – Nuclear and Radiation Safety, 2013, pp.15-22.
19. Pavlov D.I., Sorokin V.T., Gataullin R.M., Sharafutdinov R.B. Sostoyaniye i osnovnyye napravleniya
sozdaniya parka konteynerov dlya konditsionirovaniya i zakhoroneniya radioaktivnykh otkhodov [Status
and main directions for actions to create the pool of containers for radioactive waste conditioning
and disposal]. Yadernaya i radiatsionnaya bezopasnost’ – Nuclear and Radiation Safety, 2016, no. 3
(81), pp. 18-29.
20. Radchenko M.V. Upakovki dlya radioaktivnykh otkhodov [Packages for radioactive waste]. Moscow,
Inzhenernyy Tsentr Yadernykh Konteynerov Publ., 2014. 12 p.
21. Radchenko M.V., Kormilitsyna L.A., Morgulyan V.G., Matyushin YU.I. Mnogotselevyye upakovki
dlya radioaktivnykh otkhodov [Multi-purpose packages for radioactive waste]. Radioaktivnyye otkhody
– Radioactive waste. Nauchno-tekhnicheskiy zhurnal, 2017, no. 1, p. 114.
22. Loshchakov I.I. et al. Raschet oslableniya gamma-izlucheniya zashchitnym zhelezobetonnym konteynerom
[Gamma radiation reduction by the protective ferro-concrete container]. Nauchno-tekhnicheskiye
vedomosti SPbGPU: Nauka i obrazovaniye – St. Petersburg State Polytechnical University Journal:
Science and Education, 2010, no. 1 (95), pp. 211-215.
23. Ivshin A., Kalyutik A., Blagoveshchenskii A. Investigation of the characteristics of the container for
storage of radioactive waste of nuclear power plants with uranium-graphite reactors. Proc. Int. Sci.
Conf. on Energy, Environmental and Construction Engineering (EECE-2018). MATEC Web Conf.
Volume 245, 2018.
24. Ivshin A.V., Loshchakov I.I. Koeffitsiyent oslableniya gamma-izlucheniya zhelezobetonnogo konteynera,
prednaznachennogo dlya khraneniya radioaktivnykh otkhodov [The reduction coefficient of gamma
radiation for the ferro-concrete container designed for radioactive waste storage]. Global’naya yadernaya
bezopasnost’ – Global Nuclear Safety, 2013, no. 1 (6), pp. 18-22.
25. Moskvin A.V. Novyy spravochnik khimika i tekhnologa. Radioaktivnyye veshchestva. Vrednyye veshchestva.
Gigiyenicheskiye normativy [The new handbook chemist and technologist. Radioactive substances.
Harmful substances. Hygiene standards]. St. Petersburg, ANO NPO “Professional” Publ., 2004.
1142 p.
26. Moiseyev A.A., Ivanov V.I. Spravochnik po dozimetrii i radiatsionnoy gigiyene [Handbook of dosimetry
and radiation hygiene]. Moscow, Energoatomizdat Publ., 1984. 296 p.