Alekseeva I.V., Budnik A.P., Sliuniaev M.N.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The search for promising ways of nuclear energy usage has led to the emergence of a whole line of research on the direct conversion of the nuclear reaction products energy into laser radiation. In the present work, the amplifying properties of a spatially inhomogeneous nuclear-excited containing uranium nanoparticles moving argon-xenon medium irradiated by an inhomogeneous neutron field were studied. This work purpose is to investigate the dependence of the laser active medium amplifying properties on the initial gas mixture velocity, neutron pulse duration, and the neutron flux space-time distribution. As a short result, we could present the radial dependence of the laser radiation intensity gain at different points in time showed on the picture below. Summarizing laser radiation intensity gain calculations results: an active laser- medium with a length of 1 m provides a significant amplification (10 or more times) of the laser radiation in one pass. And it seems to be reasonable to continue studying the amplifying properties of such laser-active medium, considering the laser radiation’s wave nature.
1. Miley G.H., McArhur D., DeYuong R., Prelas M. Fission reactor pumped laser: History and prospects. Proc. Conf. 50 Years with nuclear fission. Washington, 1989, pp. 333–342.
2. Budnik A.P., Kosarev V.A., Lunev V.P. Matematicheskoe modelirovanie generatsionnykh kharakteristik aktivnykh gazovykh sred, soderzhashchikh nanoklastery soedineniy urana [Mathematical modeling of the
generation characteristics of active gaseous media containing nanoclusters of uranium compounds]. Trudy
IV mezhdunarodnoy konferentsii “Fizika lazerov s yadernoy nakachkoy i impul'snye reaktory” [Proc. IV
Int Confer on Physics of Nuclear Pumped Laser and Pulse Reactor]. Obninsk, 2009, vol. 1, pp. 177–184.
3. Budnik A.P., Kosarev V.A., Lunev V.P. Mathematical simulation of kinetic processes in gas of argonxenon plasma containing nanoclusters of chemical compounds of uranium. Preprint FEI-3141 – Preprint
IPPE-3141. Obninsk, 2008, p. 23 (In Russian).
4. Budnik A.P., Deputatova L.V., Fortov V.E., Lunev V.P., Vladimirov V.I. Simulation of kinetic processes, optical and neutron properties of the nuclear-excited uranium dusty plasma of the argon-xenon gas mixture. Ukrainian Journal of Physics, 2012, no. 12, pp. 1260–1264.
5. Budnik A.P., Deputatova L.V., Fortov V.E., Kosarev V.A., Rykov V.A., Vladimirov V.I. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma. Contribution to Plasma Physics,
2009, no. 10, pp. 765–768.
6. Budnik A.P., Lunev V.P. Raschetno-teoreticheskie issledovaniya metodom Monte-Karlo opticheskikh i
neytronno-fizicheskikh svoystv argon-ksenonovoy gazovoy sredy, soderzhashchey nanoklastery urana i
ego khimicheskikh soedineniy [The theoretical investigation of neutron and optical properties of argonxenon gas media containing nanoclusters of the uranium and its chemical compounds by the Monte-Carlo
method]. Fiziko-khimicheskaya kinetika v gazovoy dinamike – Physical-Chemical Kinetics in Gas Dynamics, 2011, vol. 11.
7. Budnik A.P., Sipachev A.V. Matematicheskoe modelirovanie kineticheskikh protsessov v argonksenonovoy yaderno-vozbuzhdaemoy plazme, soderzhashchey nanoklastery urana [Mathematical simulation of kinetic processes in argonxenon nuclear-exited plasma, containing nanoclusters of uranium].
Fiziko-khimicheskaya kinetika v gazovoy dinamike - Physical-Chemical Kinetics in Gas Dynamics, 2012,
vol. 13, no. 3.
8. Budnik A.P., Sipachev A.V. Matematicheskoe modelirovanie kineticheskikh protsessov pri generatsii
lazernogo izlucheniya v argon-ksenonovoy aktivnoy gazovoy srede, soderzhashchey nanochastitsy urana
[Mathematical simulation of kinetic processes in generation of laser radiation in argon-xenon active gas
media, containing nanoparticles of uranium]. Fiziko-khimicheskaya kinetika v gazovoy dinamike – Physical-Chemical Kinetics in Gas Dynamics, 2013, vol. 14, no. 2.
9. Budnik A.P., Sipachev A.V. Matematicheskoe modelirovanie kineticheskikh protsessov pri generatsii
lazernogo izlucheniya v geliy-argon-ksenonovoy aktivnoy gazovoy srede, soderzhashchey nanochastitsy
urana [Mathematical modeling of kinetic processes with generation of laser radiation in helium-argonxenon dusty plasma containing uranium nanoparticles]. Fiziko-khimicheskaya kinetika v gazovoy dinamike - Physical-Chemical Kinetics in Gas Dynamics, 2014, vol. 15, no. 5.
10. Budnik A.P., Sipachev A.V., Sliuniaev M.N. Matematicheskoe modelirovanie kineticheskikh protsessov v dvizhushcheysya argon-ksenonovoy pylevoy plazme, soderzhashchey nanochastitsy urana [Mathematical modeling of kinetic processes in moving argon-xenon dusty plasma containing uranium nanoparticles]. Fiziko-khimicheskaya kinetika v gazovoy dinamike - Physical-Chemical Kinetics in Gas Dynamics, 2014, vol. 15, no. 6.
11. Sliuniaev M.N., Budnik A.P., Sipachev A.V. Modelirovanie pryamogo preobrazovaniya kineticheskoy
energii oskolkov deleniya urana v energiyu lazernogo izlucheniya v argon-ksenonovoy pylevoy plazme s
nanochastitsami urana [Simulation of direct conversion of the kinetic energy of the fission fragments of
uranium in the laser energy in an argon-xenon dusty plasmas with nanoparticles of uranium]. Izvestiya
vuzov. Yadernaya energetika - Proceedings of the university. Nuclear power, 2015, no. 2, pp. 71–80.
12. Sliuniaev M.N., Budnik A.P., Sipachev A.V. Modeling of direct conversion of the uranium fission product kinetic energy to laser radiation energy in an argon-xenon dusty plasma with uranium nanoparticles. Nuclear Energy and Technology, 2015, no. 1, pp. 272–276.
13. Alexeeva I.V., Budnik A.P., Sipachev A.V., Sliuniaev M.N. Mathematical simulation of kinetic processes in moving irradiated by neutrons gas medium containing uranium nanoparticles. Journal of Physics: Conference Series, 2017, no. 815, pp. 012010.