Budnik A.P., Sliuniaev M.N.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
The use of uranium nanoparticles dispersed in a laser-active medium instead of traditionally used methods of heterogeneous nuclear pumping of active gas medium can increase the fraction of energy carried by fission fragments from the condensed phase into the gas medium by more than an order of magnitude. This creates the conditions for increasing the efficiency of nuclear into optical radiation energy conversion. However, the scattering and absorption of laser radiation by an active medium containing uranium nanoparticles are important factors preventing the laser radiation generation in such a medium. Mathematical modeling of the generation and amplification of laser radiation in a moving spatially inhomogeneous nuclear-excited neutron-irradiated argon-xenon medium containing uranium nanoparticles injected into a cylindrical laser-active dusty element, taking into account optical inhomogeneities caused by the dust component. The process of amplification and intensity distribution of a master oscillator laser beam in a moving spatially inhomogeneous nuclear-excited argon-xenon neutron-irradiated medium containing uranium nanoparticles has been studied for the first time. Data were also obtained on the propagation of a light beam near a relatively sharp dust component concentration decrease in moving gas medium. As a brief result: moving spatially inhomogeneous nuclear-excited neutron-irradiated argon-xenon medium containing uranium nanoparticles does not have a pronounced destructive effect on the propagation of laser radiation in it, on condition that the light flux is not wider than the dust component.
1. Gulevich A.V., Dyachenko P.P., Zrodnikov A.V., Kononov V.N., Prokhorov Yu.A., Pupko V.Ya. Energeticheskiy maket lazernoy sistemy s nakachkoy ot impul'snogo reaktora [Energy model of a laser system
pumped from a pulsed reactor]. Atomnaya energiya – Atomic Energy, 1996, vol. 80, no. 5, pp. 361–365.
2. Ginzburg V.L. O fizike i astrofizike [About physics and astrophysics]. Moscow, Nauka Publ., 1985.
3. Budnik A.P., Kosarev V.A., Lunev V.P. Matematicheskoe modelirovanie generatsionnykh kharakteristik
aktivnykh gazovykh sred, soderzhashchikh nanoklastery soedineniy urana [Mathematical modeling of the
generation characteristics of active gaseous media containing nanoclusters of uranium compounds]. Trudy
IV mezhdunarodnoy konferentsii “Fizika lazerov s yadernoy nakachkoy i impul'snye reaktory” [Proc. IV
Int. Conf. on Physics of Nuclear Pumped Laser and Pulse Reactor]. Obninsk, 2009, no. 1, pp. 177–184.
4. Budnik A.P., Kosarev V.A., Lunev V.P. Matematicheskoe modelirovanie kineticheskikh protsessov v
gazovoy argon-ksenonovoy plazme, soderzhashchey nanoklastery khimicheskikh soedineniy urana [Mathematical simulation of kinetic processes in gas of argon-xenon plasma containing nanoclusters of chemical compounds of uranium. Preprint FEI 3141 – Preprint IPPE 3141. Obninsk, 2008. 23 p.
5. Budnik A.P., Deputatova L.V., Fortov V.E., Lunev V.P., Vladimirov V.I. Simulation of kinetic processes, optical and neutron properties of the nuclear-excited uranium dusty plasma of the argon-xenon gas mixture. Ukrainian Journal of Physics, 2012, no. 12, pp. 1260–1264.
6. Budnik A.P., Deputatova L.V., Fortov V.E., Kosarev V.A., Rykov V.A., Vladimirov V.I. Simulation of
kinetic processes in the nuclear-excited helium non-ideal dusty plasma. Contribution to Plasma Physics,
2009, no. 10, pp. 765–768.
7. Alekseeva I.V., Budnik A.P., Sipachev A.V. Neravnovesnaya radiatsionnaya plazmodinamika v
gazovykh aktivnykh sredakh opticheskikh kvantovykh usiliteley s yadernoy nakachkoy [Nonequilibrium radiation plasma dynamics in gas active media of nuclear-pumped optical quantum amplifiers]. Fizikokhimicheskaya kinetika v gazovoy dinamike – Physical-Chemical Kinetics in Gas Dynamics, 2010, no. 9.
8. Budnik A.P., Lunev V.P. Raschetno-teoreticheskie issledovaniya metodom Monte-Karlo opticheskikh i
neytronno-fizicheskikh svoystv argon-ksenonovoy gazovoy sredy, soderzhashchey nanoklastery urana i
ego khimicheskikh soedineniy [The theoretical investigation of neutron and optical properties of argonxenon gas media containing nanoclusters of the uranium and its chemical compounds by the Monte-Carlo
method]. Fiziko-khimicheskaya kinetika v gazovoy dinamike - Physical-Chemical Kinetics in Gas Dynamics, 2011, vol. 11.
9. Budnik A.P., Sipachev A.V. Matematicheskoe modelirovanie kineticheskikh protsessov v argonksenonovoy yaderno-vozbuzhdaemoy plazme, soderzhashchey nanoklastery urana [Mathematical simulation of kinetic processes in argonxenon nuclear-exited plasma, containing nanoclusters of uranium].
Fiziko-khimicheskaya kinetika v gazovoy dinamike – Physical-Chemical Kinetics in Gas Dynamics, 2012,
vol. 13, no. 3.
10. Budnik A.P., Sipachev A.V. Matematicheskoe modelirovanie kineticheskikh protsessov pri generatsii lazernogo izlucheniya v argon-ksenonovoy aktivnoy gazovoy srede, soderzhashchey nanochastitsy urana
[Mathematical simulation of kinetic processes in generation of laser radiation in argon-xenon active gas
media, containing nanoparticles of uranium]. Fiziko-khimicheskaya kinetika v gazovoy dinamike - Physical-Chemical Kinetics in Gas Dynamics, 2013, vol. 14, no. 2.
11. Budnik A.P., Sipachev A.V. Matematicheskoe modelirovanie kineticheskikh protsessov pri generatsii lazernogo izlucheniya v geliy-argon-ksenonovoy aktivnoy gazovoy srede, soderzhashchey nanochastitsy
urana [Mathematical modeling of kinetic processes with generation of laser radiation in helium-argonxenon dusty plasma containing uranium nanoparticles]. Fiziko-khimicheskaya kinetika v gazovoy dinamike - Physical-Chemical Kinetics in Gas Dynamics, 2014, vol. 15, no. 5.
12. Budnik A.P., Sipachev A.V., Sliuniaev M.N. Matematicheskoe modelirovanie kineticheskikh protsessov
v dvizhushcheysya argon-ksenonovoy pylevoy plazme, soderzhashchey nanochastitsy urana [Mathematical modeling of kinetic processes in moving argon-xenon dusty plasma containing uranium nanoparticles]. Fiziko-khimicheskaya kinetika v gazovoy dinamike – Physical-Chemical Kinetics in Gas Dynamics,
2014, vol. 15, no. 6.
13. Sliuniaev M.N., Budnik A.P., Sipachev A.V. Modelirovanie pryamogo preobrazovaniya kineticheskoy
energii oskolkov deleniya urana v energiyu lazernogo izlucheniya v argon-ksenonovoy pylevoy plazme s
nanochastitsami urana [Simulation of direct conversion of the kinetic energy of the fission fragments of
uranium in the laser energy in an argon-xenon dusty plasmas with nanoparticles of uranium]. Izvestiya
vuzov. Yadernaya energetika - Proceedings of the university. Nuclear power, 2015, no. 2, pp. 71–80.
14. Sliuniaev M.N., Budnik A.P., Sipachev A.V. Modeling of direct conversion of the uranium fission product kinetic energy to laser radiation energy in an argon-xenon dusty plasma with uranium nanoparticles. Nuclear Energy and Technology, 2015, no. 1, pp. 272–276.
15. Alexeeva I.V., Budnik A.P., Sipachev A.V., Sliuniaev M.N. Mathematical simulation of kinetic processes in moving irradiated by neutrons gas medium containing uranium nanoparticles. Journal of Physics: Conference Series, 2017, no. 815, pp. 012010.