Ulyanov V.V., Koshelev M.M., Konovalov M.A., Kharchuk S.Е.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
As part of the search for new areas of application of liquid metal coolants, their use for cooling crystallizers of steel in continuous casting machines instead of water has been proposed. This solution will reduce energy costs in the production of steel due to the implementation of the steam-power cycle with the generation of electricity. This article describes the results of the justification of the optimal liquid metal coolant and the modeling of cooling of a round crystallizer channel by it. It is shown that the eutectic alloy of lead with bismuth, which was successfully used as a coolant for ship reactors in the Soviet Union, is best suited to solve this problem. A comparative simulation of cooling of hardened steel in a round channel with a lead-bismuth eutectic with temperatures of 180 °C and 450 °C and water with a temperature of 20 °C revealed that replacing water with a liquid metal coolant practically does not reduce the efficiency of steel production. The greatest heat flux is removed from the steel crystallizer at a temperature of lead-bismuth eutectic at the inlet of the steel crystallizer equal to 180 °C. The temperature of the lead-bismuth eutectic at the outlet of the steel crystallizer reaches 400 °C, which is sufficient to generate electricity in the steam-power cycle. The choice in favor of modeling in comparison with the experiment was made in accordance with current trends in cost reduction due to the use of computer-based calculation tools. It is advisable to continue research to select the wall material and determine the optimal shape of the cooling channels of the crystallizer for maximum intensification of heat transfer between hardening steel and lead-bismuth coolant.
1. Kirillov P.L., Ushakov P.A. Teploobmen zhidkikh metallov: osobennosti, metody issledovaniy i osnovnye zavisimosti [Teploobmen zhidkikh metallov: osobennosti, metody issledovaniy i osnovnyye zavisimosti]. Teploenergetika – Thermal Engineering, 2001, no. 1, pp. 49–56.
2. Kirillov P.L., Bobkov V.P., Zhukov A.V., Yur’yev Yu.S. Spravochnik po teplogidravlicheskim raschetam v yadernoy energetike. Tom 1. Teplogidravlicheskiye protsessy v YAEU [Handbook of thermohydraulic calculations in nuclear power. Volume 1. Thermal-hydraulic processes in NPP]. Moscow, IzdAT Publ., 2010. 771 p.
3. Kirillov P.L., Bogoslovskaya G.P. Teplomassoobmen v yadernykh energeticheskikh ustanovkakh [Heat and mass transfer in nuclear power plants]. Moscow, IzdAT Publ., 2008. 256 p.
4. Ulyanov V.V., Koshelev M.M., Kharchuk S.E., Gulevsky V.A., Timochkin A.V. Issledovaniye zakonomernostey piroliza tverdykh organicheskikh polimerov pri ikh nagreve rasplavom metalla [Study of the regularities of pyrolysis of solid organic polymers when they are heated by a metal melt]. Neftekhimiya – Petrochemistry, 2018, vol. 58, no. 1, pp. 72–79.
5. Martynov P.N., Askhadullin R.Sh., Grachev N.S., Gulevsky V.A., Ivanov K.D., Orlov Yu.I., Yagodkin I.V. Teplonositeli svinets-vismut i svinets v novoy tekhnologii pererabotki zhidkostey i gazov [Leadbismuth and lead heat carriers in new technology for processing liquids and gases]. Atomnaya energiya – Atomic Energy, 2004, vol. 97, no. 2, pp. 108–115.
6. Koshelev M.M., Ulyanov V.V., Gulevsky V.A., Konovalov M.A., Kharchuk S.E. O vozmozhnosti primeneniya svinetssoderzhashchikh rasplavov dlya neftepererabatyvayushchey i staleliteynoy otrasley promyshlennosti [On the possibility of using lead-containing melts for the oil refining and steel industries]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic
Science and Technology. Series: Nuclear and Reactor Constants, 2018, no. 5, pp. 155–159.
7. Dyudkin D.A., Kisilenko V.V. Sovremennaya tekhnologiya proizvodstva stali [Modern steel production technology]. Moscow, Teplotekhnik Publ., 2007. 528 p.
8. Mikhnevich Yu.F. Nepreryvnaya razlivka stali [Continuous casting of steel]. Moscow, Metallurgiya Publ., 1990. 296 p.
9. Kudrin V.A. Metallurgiya stali. Uchebnik dlya vuzov [Steel metallurgy. Textbook for universities]. Moscow, Metallurgiya Publ., 1989. 560 p.
10. Chernomas V.V., Derbetkin A.A., Makarov S.S. et al. Povysheniye nadezhnosti i effektivnosti raboty kristallizatora ustanovki liteyno-kovochnogo modulya za schet sovershenstvovaniya sistemy ego okhlazhdeniya [Improving the reliability and efficiency of the mold of the installation of the casting and forging module by improving its cooling system]. Zagotovitel’nyye proizvodstva v mashinostroyenii – Blank production in mechanical engineering, 2009, no. 4, pp. 38–40.
11. Stulov V.V. Okhlazhdeniye kristallizatora pri poluchenii nepreryvnolitykh tsilindricheskikh stal’nykh zagotovok [Cooling of the mold during the production of continuously cast cylindrical steel billets]. Problemy mashinostroyeniya i nadezhnosti mashin – Machine building and machine reliability problems, 2017, no. 1, pp. 67–72.
12. Kirillov P.L., Deniskina N.B. Teplofizicheskiye svoystva zhidkometallicheskikh teplonositeley (spravochnyye tablitsy i sootnosheniya) [Thermophysical properties of liquid metal coolants (reference tables and ratios)]. Moscow, TSNIIatominform Publ., 2000. 42 p.
13. Skomorokhova S.N., Nikolaev A.N., Askhadullin R.Sh., Trifanova E.M., Sitnikov I.V. The immobilization of the ash residue produced as a result of processing radioactive ion-exchange resins in a lead melt. Asian journal of microbiology, biotechnology and environmental sciences, 2016, vol. 18, no. 4,
pp. 1063–1069.
14. Subbotin V.I. Arnol’dov M.N., Kozlov F.A., Shimkevich A.L. Zhidkometallicheskiye teplonositeli dlya yadernoy energetiki [Liquid metal coolants for nuclear power]. Atomnaya energiya – Atomic Energy, 2002, vol. 92, no. 1, pp. 31–42.
15. Zamukov V.V. Istoriya sozdaniya APL s ZHMT v AO “SPMBM “Malahit” [The history of the creation of a nuclear submarine with liquid metal products at JSC SPMBM Malakhit]. Trudy mezhdunarodnoy konferencii "Tyazhelye zhidkometallicheskie teplonositeli v yadernyh tekhnologiyah (TZHMT-2018)" [Proc. Int. Conf. "Heavy Liquid Metal Coolants in Nuclear Technologies (TZHMT-2018)"]. Obninsk, 2019, pp. 1–5.
16. Kozyrev N.A., Gizatulin R.A. Mashiny i protsessy nepreryvnogo lit’ya zagotovok [Continuous casting machines and processes]. Novokuznetsk, SibGIU Publ., 2011. 357 p.
17. Bulanov L.V., Korzunin L.G. et al. Mashiny nepreryvnogo lit’ya zagotovok. Teoriya i raschet [Continuous casting machines. Theory and calculation]. Yekaterinburg, Uralmash – Metallurgicheskoye oborudovaniye Publ., 2004. 349 p.
18. Akimenko A.D. Teplovoy raschet ustanovok nepreryvnoy razlivki stali. Posobiye po proyektirovaniyu [Thermal calculation of installations for continuous casting of steel. Design guide]. Gorky, Volgo-Vyatka book publishing house, 1965. 60 p.
19. Comparing CFD Software. Available at: https://www.resolvedanalytics.com/theflux/comparing-cfd-software (accessed 10.06.2020).
20. Lee W.Ch. Filmwise condensation on a horizontal tube in the presence of forced. Dr. Phil. Sci. Diss. London, 1982. 341 p.
21. Lee W.H. A Pressure Iteration Scheme for Two-Phase Modeling. Technical Report LA-UR 79-975. Los Alamos, New Mexico, Los Alamos Scientific Laboratory, 1979.
22. Korol’kova L.N., Petrova L.P. Modelirovaniye izmeneniya temperatury slitka pri razlivke stali na MNLZ [Modeling the change in the temperature of the ingot when casting steel at the continuous casting machine]. Obrazovaniye, Nauka, Proizvodstvo I Upravleniye – Education, Science, Manufacturing And Management, 2011, pp. 34–38.
23. Chawla T.C., Graff D.L., Borg R.C., Bordner G.L., Weber D P., Miller D. Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis. Nuclear Engineering and Design, 1981, vol. 67, pp. 57–74.
24. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies. OECD/NEA Nuclear Science Committee, 2007. ISBN 978-92-64-99002-9. 693 p.
25. Petrov I.E., Pozin A.E., Vdovin K.N. Raschet teplovogo balansa i zamena sverlenykh kanalov vodyanogo okhlazhdeniya na shchelevyye v shirokoy mednoy stenke MNLZ [Calculation of the heat balance and replacement of drilled water cooling channels with slotted ones in the wide copper wall of the continuous casting machine]. Teoriya I Tekhnologiya Metallurgicheskogo Proizvodstva – Theory And Technology of Metallurgical Production, 2011, no. 11, pp. 73–78.