Levchenko V.A., Kascheev M.V., Dorokhovich S.L., Zaytsev A.A.
The Limited Liability Company "Simulation Systems Ltd.", Obninsk, Russia
The problem of determining a two-dimensional non-stationary temperature field in a k-layer cylinder and plate of length l is solved. There is a symmetrically located gap (plate) or cylindrical cavity (cylinder) in the center of these bodies. The absence of a gap or cavity is a special case of the problem. In each layer, there are heat sources, depending on the coordinates and time. The initial temperature of the layers is a function of the coordinates. In the center of the bodies the symmetry condition is fulfilled. At the boundary of contact of the layers — ideal thermal contact: continuity of temperatures and heat flows. On the inner and outer side surfaces and ends, heat exchange occurs according to Newton's law with environments whose temperatures change over time according to an arbitrary law. With the help of the geometric parameter Г in the mathematical formulation of the problem, one differential equation for both multilayer bodies is written. The problem in this statement is solved for the first time. For the solution of the problem the following approach is used: by means of the method of finite
integral transformations differential operations on longitudinal and transverse coordinates are sequentially excluded, and the determination of time dependence of temperature is reduced to the solution of the ordinary differential equation of the first order.
1. Carslou H., Eger D. Teploprovodnost’ tvyordyh tel [Thermal conductivity of solids]. Moscow, Nauka Publ., 1964. 488 p.
2. Lykov A.V. Teoriya teploprovodnosti [The theory of thermal conductivity]. Moscow, Vysshaya Shkola Publ., 1967, 600 p.
3. Lykov A.V. Teplomassoobmen (Spravochnik) [Heat And Mass Transfer (Handbook)]. Moscow, Energiya Publ., 1971. 560 p.
4. Lykov A.V., Mihajlov Yu.A. Teoriya teplo- i massoperenosa [Theory of heat and mass transfer]. Moscow – Leningrad, Gosenergoizdat Publ., 1963. 536 p.
5. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tvyordyh tel. Ucheb. posobie [Analytical methods in the theory of thermal conductivity of solids. Textbook]. Moscow, Vysshaya shkola Publ., 2001. 550 p.
6. Butkovskij A.G. Harakteristiki system s raspredelyonnymi parametrami [Characteristics of systems with distributed parameters]. Moscow, Nauka Publ., 1979. 224 p.
7. Budak B.M., Samarskij A.A., Tihonov A.N. Sbornik zadach po matematicheskoj fizike [Collection of problems in mathematical physics]. Moscow, Nauka Publ, 1980. 688 p.
8. Smirnov M.S. Zadacha teploprovodnosti dlya sistemy dvuh tel [The problem of thermal conductivity for a system of two bodies]. Moscow, Akademiya nauk SSSR Publ., 1958, pp. 153—155.
9. Smirnov M.S. Temperaturnoe pole v tryohslojnoj stenke pri granichnyh usloviyah chetvyortogo roda [Temperature field in a three-layer wall under boundary conditions of the fourth kind]. Moscow – Leningrad, Gosenergoizdat Publ., 1957, pp. 17–20.
10. Vodicka V. Wärmeleitung in geschichteten Kugel-und Zilinderkörpern. Schweizer Archiv, 1950, no. 10, pp. 297–304.
11. Vodicka V. Eindimensionale Wärmeleitung in geschichteten Ko¨rpern. Nachrichten, 1955, vol. 14, no. 1, pp. 47–55.
12. Bulavin P.E., Kascheev V.M. Reshenie neodnorodnogo uravneniya teploprovodnosti dlya mnogoslojnyh tel [The solution of the inhomogeneous heat conduction equation for multilayered bodies]. Inzhenernofizicheskij zhurnal – Journal of Engineering Physics and Thermophysics, 1964, vol. VII, no. 9, pp. 71–77.
13. Tugolukov E.N. Reshenie zadach teploprovodnosti metodom konechnyh integral’nyh preobrazovanij. Uchebnoe posobie [Solution of heat conduction problems by the method of finite integral transformations. Textbook]. Tambov, TGTU Publ., 2005. 116 p.
14. Levchenko V.A., Kascheev M.V., Dorohovich S.L., Zaytsev A.A. Reshenie dvumernoj zadachi nestatsionarnoj teploprovodnosti v k-slojnyh plastine i tsilindre [Solution of the two-dimensional problem of non-stationary thermal conductivity in a k-layer plate and cylinder]. Izvestiya vuzov. Yadernaya Energetika – Proceedings of Universities. Nuclear Power Engineering, 2020, no. 1, pp. 60–68.
15. Gulevich A.V., D’yachenko P.P., Zrodnikov A.V. Kuharchuk O.F. Svyazannye reaktornye sistemy impul’snogo dejstviya [Coupled reactor systems of pulse action]. Moscow, Energoatomizdat Publ., 2003. 360 p.
16. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Differentsial’nye uravneniya matematicheskoj fiiziki [Differential equations of mathematical physics]. Moscow, Gosudarstvennoe izdatel’stvo fiziko-matematicheskoj literatury Publ., 1962. 730 p.
17. Lebedev N.N. Spetsial’nye funktsii i ih prilozheniya [Special functions and their applications]. Moscow, Fizmatgiz Publ., 1963. 358 p.
18. Kurosh A.G. Kurs vysshej algebry [Course of higher algebra]. Moscow, Nauka Publ., 1975. 432 p.
19. Stepanov V.V. Kurs differentsial’nyh uravnenij [Course of differential equations]. Moscow, Gosudarstvennoe izdatel’stvo fiziko-matematicheskoj literatury Publ., 1950. 468 p.