DOI: 10.55176/2414-1038-2020-2-173-183
Authors & Affiliations
Askhadullin R.Sh., Legkikh A.Yu.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Askhadullin R.Sh. – Head of the Laboratory, Cand. Sci. (Tech.), Associate Professor.
Legkikh A.Yu. – Leading Researcher, Cand. Sci. (Tech). Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-41-15; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Abstract
In a lead-bismuth heat carrier, to ensure the conditions for the formation and maintenance of protective oxide films on the surfaces of structural elements in contact with the heat carrier, it is necessary to regulate the dosage of dissolved oxygen into the heat carrier. In the absence of feeding the lead-bismuth heat carrier with dissolved oxygen, the oxidative potential of the heat carrier can decrease to values at which the development of corrosion and erosion processes begins. A solid-phase method for regulating the oxidizing potential in a lead-bismuth heat carrier, which is implemented using mass transfer devices, has been developed and justified at the SSC RF-FEI. The authors of this paper develop various structures of mass transfer devices for use in research installations with lead-bismuth coolant, as well as in advanced reactor installations of the new generation, in which the lead-bismuth melt is considered
as a primary coolant. The article presents the results of the development and justification of mass transfer devices that can be used to regulate the oxide potential in the lead-bismuth coolant of a new generation of reactor plants.
Keywords
oxygen, mass transfer apparatus, lead oxide, oxidative potential, performance, dissolution, calculation, reactor plant, lead-bismuth coolant, solid-phase control method
Article Text (PDF, in Russian)
References
1. Askhadullin R.Sh., Storozhenko A.N., Shelemetev V.M., Skomorokhov A.N., Sadovnichy R.P., Legkikh A.Yu. Sovremennoe sostoyanie razrabotok AO "GNTs RF – FEI" datchikov aktivnosti kisloroda dlya reaktornykh ustanovok s tyazhelym zhidkometallicheskim teplonositelem [Current state of development of JSC "SSC RF-FEI" oxygen activity sensors for reactor installations with heavy liquid metal heat carrier]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2017, special issue, pp. 12–19.
2. Martynov P.N., Askhadullin R.Sh., Legkikh A.Yu., Simakov A.A. Analiz sredstv "tverdofaznogo" regulirovaniya kislorodnogo potentsiala v TZhMT [Analysis of means of "solid-phase" regulation of oxygen potential in TZHMT]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2015, no. 3, pp. 79–84.
3. Askhadullin R.Sh., Martynov P.N., Rachkov V.I., Legkikh A.Yu. Raschetno-eksperimental'nye issledovaniya v obosnovanie massoobmennykh apparatov dlya obespecheniya zadannogo kislorodnogo rezhima v TZhMT (Pb, Pb-Bi) [Computational and experimental studies to substantiate mass transfer devices for providing a given oxygen regime in HLMC (Pb, Pb-Bi)]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2014, no. 1, pp. 160–171.
4. Askhadullin R.Sh., Ivanov K.D., Shelemetev V.M., Sadovnichy R.P. Otsenka intensivnosti protsessov okisleniya konstruktsionnykh staley pervogo kontura YaEU s tyazhelymi teplonositelyami [Evaluation of the intensity of oxidation processes of structural steels of the first circuit of nuclear power plants with heavy heat carriers]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2011, no. 4, pp. 121–128.
5. Niyazov S.-A.S., Ivanov K.D., Lavrova O.V. Podkhody k modelirovaniyu protsessov okisleniya staley v TZhMT [Approaches to modeling of steel oxidation processes in HLMC]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2016, special issue, pp. 208–218.
6. Legkikh A.Yu., Martynov P.N., Askhadullin R.Sh. Raschet massoobmennykh apparatov dlya obespecheniya zadannogo kislorodnogo rezhima v tyazhelom zhidkometallicheskom teplonositele [Calculation of
mass transfer apparatus for providing a given oxygen regime in a heavy liquid metal heat carrier]. Izvestiya
vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2013, no. 1,
pp. 80–91.
7. Martynov P.N., Askhadullin R.Sh., Simakov A.A., Legkikh A.Yu. Massoobmennyy apparat [Mass transfer apparatus]. Patent RF, no. 2547104, 2015.
8. Martynov P.N., Askhadullin R.Sh., Simakov A.A., Legkikh A.Yu., Chaban A.Yu. Massoobmennyy apparat s diskretnoy podachey gazovoy sredy [Mass transfer apparatus with discrete gas medium supply].
Patent RF, no. 2510291, 2014.
9. Askhadullin R.Sh., Martynov P.N., Lung A.Yu., et al. Voprosy sozdaniya massoobmennogo apparata
dlya podderzhaniya kislorodnogo rezhima v I-m konture reaktornoy ustanovki "SVBR-100" [Questions
of creating a mass exchange apparatus for maintaining the oxygen regime in the I-th circuit of the
SVBR-100 reactor plant]. Trudy Vserossiyskoy nauchnoy shkoly dlya molodezhi "Teplofizika reaktorov
na bystrykh neytronakh" [Proc. all-Russian scientific school for youth "Thermophysics of fast neutron
reactors"]. Obninsk, 2010, pp. 39–40.
UDC 621.039.534.6
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2020, issue 2, 1:15