Sinyukov R.Yu.1, Blokhin P.A.2, Pryanichnikov A.A.3,4, Simakov A.S.3, Belikhin M.A.3,4, Degtyarev I.I.1, 2, Novoskoltsev F.N.1, Altukhova E.V.1, Altukhov Yu.V1, Blokhin A.I.2
The paper describes the physical basis of the mathematical model of radiation-ion damage in solid matter. The following stages of defect generation are considered: primary knocked out atoms, atomic collision cascades (dynamic stage of damage formation) based on 6 types of cascade functions. The software implementation of the described model is included in the RTS&T code designed for statistical modeling of multi-particle (200 types of particles, resonances and ions) radiation transport in heterogeneous 3D geometries in the energy range up to 20 TeV. In the region of low energies, the RTS&T transfer model is based on direct use of all the information contained in the evaluated nuclear data files submitted in the ENDF-6 format. The report compares the results of numerical modeling with experimental data.
1. Waters L.S. MCNPX user’s manual version 2.4.0. Los Alamos, New Mexico, USA, Los Alamos National
Laboratory, 2002.
2. Bohlen T.T., Cerutti F., Chin M., Fasso A. The FLUKA code: Developments and Challenges for High
Energy and Medical Applications. Nuclear Data Sheets, 2014, vol. 120, pp. 211–214.
doi:10.1016/j.nds.2014.07.049.
3. Sato T., Iwamoto Y., Hashimoto S., Ogawa T., Furuta T., Shin-ichiro Abe, Kai T., Pi-En Tsai, Matsuda N.,
Iwase H., Shigyo N., Sihver L., Niita K. Features of particle and heavy ion transport code system (PHITS)
version 3.02. J. Nucl. Sci. Technol., 2018, vol. 55, pp. 684–695. doi:10.1080/00223131.2017.1419890.
4. Mokhov N.V. The MARS Code System User’s Guide, Version 13(95). Fermilab-FN-628x (1995). Available at: https://cds.cern.ch/record/283266/files/SCAN-9506126.pdf (accessed 06.10.2020);
Mokhov N.V. et al. Fermilab-Conf98/379 (1998). Proc. Fourt Workshop on Simulating Accelerator Radiation Environments (SARE4). Knoxville, TN, 1998, pp. 87–99.
5. Blokhin A.I., Degtyarev I.I., Lokhovitskii A.E., Maslov M.A., Yazynin I.A. RTS&T Monte Carlo Code
(Facilities and Computation Methods). Proceedings of the SARE-3 Workshop. KEK, Tsukuba, Japan,
1997.
Degtyarev I.I., Liashenko O.A., Lokhovitsky A.E., Yazinin I.A., Belyakov-Bodin V.I., Blokhin A.I.
Opisanie modelirovaniya protsessov perenosa i geometrii v programme RTS&T [Description of modeling
of transfer processes and geometry in the RTS&T program]. Voprosy atomnoy nauki i tekhniki. Seriya:
Yadernye konstanty – Problems of Atomic Science and Technology. Series: Nuclear Constants, 1999, no. 2, p. 125.
7. Degtyarev I.I., Liashenko O.A., Yazynin I.A., Blokhin A.I., Belyakov-Bodin V.I. Simulation of Relativistic Hadronic Interactions in the Framework of the RTS&T-2004 Code. Proc. Conf. RuPAC XIX. Dubna,
2004.
8. Degtyarev I.I., Novoskoltsev F.N., Liashenko O.A., Gulina E.V., Morozova L.V. The RTS&T-2014 code
status. Nuclear Energy and Technology, 2015, vol.1, no. 3, pp. 222–225.
9. Pryanichnikov A.A., Simakov A.S., Degtyarev I.I., Novoskoltsev F.N., Altukhova E.V., Altukhov Yu.V.,
Sinyukov R.Yu., Blokhin A.I. Verifikatsiya mirovykh bibliotek otsenennykh yadernykh dannykh na osnove bazovykh integral'nykh eksperimentov v ramkakh programmnogo kompleksa RTS&T [Verification ot the world evaluated data libraries on the basis of integral experiments using the RTS&T code system. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science
and Technology. Series: Nuclear and Reactor Constants, 2018, vol. 1, pp. 127–136.
10. Lindhard J., Nielsen V., Scharff M. K. Dan. Vidensk. Selsk. Mat.-fys. Medd. 36, 1968, no. 10.
11. Winterbon K.B., Sigmund P., Sanders J.B.K. Spatial Distribution of Energy Deposited by Atomic Particles in Elastic Collisions. K. Dan. Vidensk. Selsk. Mat. Fys. Medd., vol. 37, no. 14, 1970.
12. Burenkov A.F., Komarov F.F., Kumahov M.A., Temkin M.M. Special Distribution of Energy Deposited
in Atomic Collision Cascades in Matter. Moscow, Energoatomizdat, 1975.
13. McKinley W.A., Feshbach H. The Coulomb scattering of relativistic electrons by nuclei. Phys. Rev., 1948,
vol. 74(12), pp. 1759–1763.
14. Oen O.S., Holmea D.K. Cross Sections for Atomic Displacements in Solids by Gamma rays. J. Appl.
Phys., 1959, vol. 30, no. 8, pp. 1289.
15. Kinchin G.H., Pease R.S. The Displacement of Atoms in Solids by Radiation. Rep. Prog. Phys., 1955,
vol. 18, pp. 1.
16. Thompson M. Defects and radiation damage in metals. Moscow, Mir Publ., 1971. 368 p.
17. Sanders J.B., Fluit J.M. Temperature dependence of the range of focused collision sequences in copper
single crystals. Moscow, Physica Publ., 1964.
18. Norgett J.M., Robinson M.T., Torrens I.M. A proposed method of calculating displacement dose rates.
Nuclear Engineering and Design, 1975, vol. 33, pp. 50–54.
19. Nordlund K., Zinkle S.J., Sand A.E., Granberg F., Averback R.S., Stoller R., Suzudo T., Malerba L., Banhart F., Weber W.J., Willaime F., Dudarev S.L., Simeone D. Improving atomic displacement and replacement calculations with physically realistic damage models. Nature Communications, 2018, vol. 9, pp. 1084. doi:10.1038/s41467-018-03415-5. Available at: https://www.nature.com/articles/s41467-018-
03415-5.pdf (accessed 06.10.2020).
20. Konobeyev A.Yu., Fischer U., Korovin Yu.A., Simakov S.P. Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections. Nuclear Energy and Technology, 2017, vol. 3, pp. 169–175.
21. Lindhard J. et al. K. Dan. Vidensk Selsk. mat-fis. Medd. 33, 10, 1963.
22. Robinson M.T. The energy dependence of neutron radiation damage in solids. Proc. BNES Conf. on Nuclear Fission Reactors. Culham 1969, pp. 346.
23. Sigmund P. A note on integral equations of the kinchin-pease type. Rad. Eff., 1969, vol. 1, pp. 15.
24. Robinson M.T., Torrens I.M. Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation. Phys. Rev. B9, 1974, pp. 5008.
25. Eckstein W. Computer Simulation of Ion-Solid Interactions. Springer-Verlag, 1991, p. 59.
26. Littmark U., Ziegler J.F. Handbook of Range Distributions. New York, Pergamon Press, 1985.
27. Iwamoto Y., Niita K., Sawai T., Ronningen R.M., Baumann T. Development of displacement damage
model in PHITS and comparison with other codes in a high-energy region. Proc. Of the Workshop
“Shielding Aspects of Accelerators, Targets and Irradiation Facilities – SATIF-11”, 11–13 September,
2012 Tsukuba, Japan. NEA no. 7157, OECD 2013.
28. Salvat F., Fernández-Varea J.M., Sempau J. Proc.Workshop PENELOPE-2008: A Code System for Monte
Carlo Simulation of Electron and Photon Transport. Barcelona, Spain, 2008, no. 6416.
29. Ziegler J.F., Ziegler M.D., Biersack J.P. SRIM – the stopping and range of ions in matter. Nuclear Instruments and Methods in Physics Research Section B, 2010, vol. 268, no. 11–12, pp. 1818–1823.
30. Paul H. Stopping Power for Light Ions. Available at: https://www-nds.iaea.org/stopping/stopping_201510/stopp_bot.html (accessed 06.10.2020).
31. Armstrong T.V., Chandler K.c. A FORTRAN program for computing stopping powers and ranges for
muons, charged pions, protons, and heavy ions. ORNL-4869.
32. Geissel H., Scheidenberger c. Slowing down of relativistic heavy ions and new applications. Nucl. Instr.
and Meth. Section B: Beam Interactions with Materials and Atoms, 1998, vol. 136–138, pp. 114–124.
33. Scheidenberger C., Geissel H. Penetration of relativistic heavy ions through matter. Nucl. Instr. and Meth.
Section B: Beam Interactions with Materials and Atoms, 1998, vol. 135, issue 1–4, pp. 25–34.
34. Cullen D.E. The 1996 ENDF/B Pre-Processing Codes. Vienna, Austria, International Atomic Energy
Agency, 1996, IAEA-NDS-39.
Aloy A.S., Trofimenko A.V., Koltsova T., Nikandrova M.V. Physico-chemical characteristics of the vitrified simulated HLW at EDC MCC. Radioactive Waste, 2018, no. 4 (5), pp. 67–75. (In Russian).