DOI: 10.55176/2414-1038-2020-4-86-115
Authors & Affiliations
Sorokin A.P., Ivanov A.P., Kuzina Yu.A., Morozov A.V., Denisova N.A.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Sorokin A.P. – Chief Researcher, Dr. Sci. (Techn.). Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-84-47; e-mail:
Ivanov A.P. – Leading Researcher.
Kuzina Ju.A. – Deputy General Director – Department of the Director of Nuclear Energy, Cand. Sci. (Techn.).
Morozov A.V. – Leading Researcher, Dr. Sci. (Techn.), professor.
Denisova N.A. – Leading Engineer.
Abstract
An important problem determining the development of clean energy is the involvement of hydrogen in the fuel cycle. At present, the main method of hydrogen production is steam methane conversion. In the long term, large-scale hydrogen production, this method is not viable due to the consumption of nonrenewable resources and the emission of greenhouse gases. Alternative methods of hydrogen production by water splitting methods using thermochemical or electrolysis processes require a high-temperature heat source. Nuclear reactors can serve as the most widely used high-temperature heat sources. The performed neutron-physical and thermophysical studies have shown that there is a fundamental possibility to provide the required parameters of a high-temperature (900–950 °C) with a 600 MW (thermal) fast neutron reactor with a sodium coolant for hydrogen production. It’s possible on the basis of one of the thermochemical cycles or high-temperature electrolysis with a high coefficient of thermal utilization of energy. It is shown that the temperature regime of core fuel elements is determined by a large number of parameters that have a regular and statistical nature. The developed methodology and numerical program allows to take into account, in the fuel assemblies shaped during the campaign, the effect on the temperature distribution of the fuel element cladding and temperature irregularities along the fuel element perimeter in the interchannel exchange fuel assembly, the random distribution of channel cross-sections and the heat generation of fuel elements using the Monte Carlo method, also other factors. For various reactor operating regimes, zones with stable temperature stratification with large gradients and temperature fluctuations have been identified. The results obtained make it possible to judge the amplitude and frequency characteristics of temperature pulsations in these potentially dangerous areas. The relative small size, the type of coolant, the choice of fissile material and structural materials make it possible to create a reactor with inherent properties that ensure increased nuclear and radiation safety.
Keywords
high-temperature nuclear reactor, sodium, hydrogen, neutronic and thermophysical processes, core, fuel element, circulation loop, intermediate heat exchanger, inlet manifold, upper chamber, safety,
emergency heat removal system
Article Text (PDF, in Russian)
1. Belogorov A.M., Bushuev V.V., Gromov A.I., Kurichev N.K., Mastepanov A.M., Troitsky A.A. Trendy i stsenarii razvitiya mirovoy energetiki v pervoy polovine XXI veka [Trends and scenarios for the development of world energy in the first half of the XXI century]. Moscow, Energy Publ., 2011. 68 p.
2. Hydrogen as an Energy Carrier and its Production by Nuclear Power. IAEA, Vienna, 1999. IAEATECDOC-1085.
3. Morozov A.V., Sorokin A.P. Sposoby polucheniya vodoroda i perspektivy ispol'zovaniya vysokotemperaturnogo bystrogo natrievogo reaktora dlya ego proizvodstva [Methods for producing hydrogen and prospects for using a high-temperature fast sodium reactor for its production]. Trudy XXI konferentsii po strukturnoy mekhanike v reaktornoy tekhnologii (SMIRT-21) [Proc. 21st Conference on Structural Mechanics in Reactor Technology (SMIRT – 21)]. Kalpakkam, India, 2011.
4. Innovation in Nuclear Energy Technology. NEA, No 6103, OECD Nuclear Energy Agency, 2007.
5. Albitskaya E.S. Razvitie yaderno-energeticheskikh sistem [Development of nuclear energy systems]. Atomnaya tekhnika za rubezhom – Atomic Technology Abroad, 2013, no. 11, pp. 3–16.
6. Degtyarev A.M., Kolyaskin O.E., Myasnikov A.A. et al. Zhidkosolevoy podkriticheskiy reaktor-szhigatel' transplutonovykh aktinoidov [Liquid salt subcritical reactor-incinerator of transplutonic actinides]. Atomnaya energiya — Atomic Energy, 2013, vol. 114, no. 4, pp. 183–188.
7. Goverdovsky A.A., Ovcharenko M.K., Belinsky V.S. et al. Elektroyadernyy podkriticheskiy blanket na modul'nom printsipe postroeniya aktivnoy zony s zhidkometallicheskimi rasplavami delyashchikhsya ftoridov urana (UF4) i plutoniya (PUF3) vo ftoridnom rastvore FLINAK [Electronuclear subcritical blanket based on the modular principle of constructing a core with liquid metal melts of fissile uranium fluorides (UF4) and plutonium (PUF3) in FLINAK fluoride solution]. Trudy konferentsii “Teplofizika reaktorov na bystrykh neytronakh (Teplofizika – 2013)” [Proc. Conf. “Thermophysics of fast neutron reactors (Thermophysics 2013”)]. Obninsk, 2013, pp. 10–13.
8. Bagdasarov Yu.E., Pinkhasik M.S., Kuznetsov I.A., Kozlov F.A., Baklushin R.P., Rineysky A.A., Poplavsky V.M., Milovidov I.V., Petrenko A.A., Arkhangelsky V.V. Tekhnicheskie problemy reaktorov na bystrykh neytronakh [Technical problems of fast reactors]. Moscow, Atomizdat Publ., 1969.
9. Troyanov M.F. Razvitie nauchno-tekhnicheskikh osnov energeticheskikh bystrykh reaktorov [Development of scientific and technical foundations of fast power reactors]. Atomnaya energiya – Atomic Energy, 1981, vol. 50, no. 2, pp. 102–110.
10. Sorokin A.P., Kuzina Yu.A., Trufanov A.A., Kamaev A.A., Orlov Yu.I., Alekseev V.V., Grabezhnaya V.A., Zagorulko Yu.I. Aktual'nye problemy teplofiziki reaktorov na bystrykh neytronakh [Actual problems of thermophysics of fast neutron reactors]. Teploenergetika – Thermal Engineering, 2018, no. 10, pp. 60–69.
11. Ponomarev-Stepnoy N.N. Dvukhkomponentnaya yadernaya energeticheskaya sistema s zamknutym yadernym toplivnym tsiklom na osnove BN i VVER [A two-component nuclear energy system with a closed nuclear fuel cycle based on BN and VVER]. Atomnaya energiya – Atomic Energy, 2016, vol. 120, no. 4, pp. 183–191.
12. Sorokin A.P., Efanov A.D., Zhukov A.V., Bogoslovskaya G.P., Sorokin G.A., Matyukhin N.M. Teplogidravlicheskie issledovaniya po probleme povysheniya vygoraniya yadernogo goryuchego v reaktorakh na bystrykh neytronakh [Thermohydraulic studies on the problem of increasing burnup of nuclear fuel in fast reactors]. Teploenergetika – Thermal Engineering, 2007, no. 3, pp. 9–16.
13. Poplavsky V.M., Zabudko A.N., Petrov E.E. et al. Fizicheskie kharakteristiki i problemy sozdaniya natrievogo bystrogo reaktora kak istochnika vysokopotentsial'noy teplovoy energii dlya proizvodstva vodoroda i drugikh vysokotemperaturnykh tekhnologiy [Physical characteristics and problems of creating a sodium fast reactor as a source of high potential thermal energy for the production of hydrogen and other high-temperature technologies]. Atomnaya energiya – Atomic Energy, 2009, vol. 106, no. 3, pp. 129–134.
14. Kalyakin S.G., Sorokin A.P., Kozlov F.A. Sostoyanie i zadachi issledovaniy po tekhnologii vysokotemperaturnogo natrievogo teplonositelya [Status and objectives of research on high-temperature sodium coolant technology]. Trudy XXI konferentsii po strukturnoy mekhanike v reaktornoy tekhnologii (SMIRT-21) [Proc. 21st Conference on Structural Mechanics in Reactor Technology (SMIRT – 21)]. Kalpakkam, India, 2011.
15. Zhukov A.V., Sorokin A.P., Sanina I.V., Kuzina Yu.A., Burkova I.V. Predstavitel'nost' bystrykh reaktorov v mire (deystvuyushchie, proektiruemye, vyvedennye iz ekspluatatsii reaktory) [Representativeness of fast reactors in the world (operating, designed, decommissioned reactors)]. Obninsk, IPPE Publ., 2012.
16. Kalyakin S.G., Kozlov F.A., Sorokin A.P., Bogoslovskaya G.P., Ivanov A.P., Konovalov M.A., Morozov A.V., Stogov V.Yu. Issledovanie v obosnovanie vysokotemperaturnoy yadernoy energotekhnologii s reaktorom na bystrykh neytronakh s natrievym teplonositelem dlya proizvodstva vodoroda [Neutronphysical and thermophysical studies in support of high-temperature nuclear energy technology with a fast neutron reactor with a sodium coolant for hydrogen production]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2016, no. 3, pp. 104–115.
17. Fast reactor Database: 2006 updata. IAEA, Vienna, 2006, pp. 338 –350. IAEA-TECDOC-1531.
18. Matveev V.I., Khomyakov Yu.S. Tekhnicheskaya fizika bystrykh reaktorov s natrievym teplonositelem [Technical physics of fast reactors with sodium coolant]. Moscow, MPEI Publ., 2012. Pp. 38–42.
19. Kirillov P.L., Yuriev Yu.S., Bobkov V.P. Handbook on thermohydraulic calculations (Nuclear reactors, heat exchangers, steam generators) [Spravochnik po teplogidravlicheskim raschetam (Yadernye reaktory, teploobmenniki, parogeneratory)]. Moscow, Energatomizdat Publ., 1984.
20. Pakhomov V.V. Reaktory na bystrykh neytronakh s natrievym teplonositelem – RBN. Mashinostroenie (entsiklopediya v soroka tomakh). Tom IV – 25: Mashinostroenie yadernoy tekhniki [Fast neutron reactors with sodium coolant – RBN. Mechanical Engineering (forty-volume encyclopedia). Volume IV – 25: Mechanical Engineering of Nuclear Engineering]. Moscow, Mashinostroenie Publ., 2003. Pp. 584–619.
21. Kazanskiy Yu.A., Troyanov M.F., Matveev V.I., Evseev A.Ya., Zvonarev A.V., Kiryushin A.I., Vasiliev B.A., Belov S.P., Matveenko I.P., Kulabukhov Yu.S., Cherny V.A., Dvusherstnov V.G., Bakov A.T., Ivanov A.P., Tyutyunnikov P.L., Pshakin G.M. Issledovanie fizicheskikh kharakteristik reaktora BN-600 [Investigation of the physical characteristics of the BN-600 reactor]. Atomnaya energiya — Atomic Energy, 1983, vol. 55, no. 1, pp. 9–14.
22. Erbacher P.J. Cladding Tube Deformation and Core Emergency Cooling in a Loss of Coolant Accident of a Pressurized Water Reactor. Nuclear Engineering and Design, 1987, vol. 103, no. 1, pp. 55–64.
23. Dutbie J.C., Perrin R.C., Adamson J. Development and Application of the CRAMP Code for Fast Reactor Core Assessment. Predictions and Experience of Core Distortion Behavior. Wilmslow, England, National Nuclear Corporated Limited, 1984.
24. Sutherland W.H. Calculation Methods for Core Distortions and Mechanical Behavior. Predictions and Experience of Core Distortion Behavior. Wilmslow, England, National Nuclear Corporated Limited, 1984.
25. Nakagawa M. ARKAS: A Three-Dimentional Finite Element Code for the Analysis of Core Distortions and Mechanical Behavior. Predictions and Experience of Core Distortion Behavior. Wilmslow, England, National Corporated Limited, 1984.
26. Heinecke J. Overview of the Design of Core Restraint Systems. Predictions and Experience of Core Distortion Behavior. Wilmslow, England, National Nuclear Corporated Limited, 1984.
27. Likhachev Yu.I., Vashlyaev Yu.N., Kravchenko I.N. Metod rascheta usiliy vzaimodeystviya i deformatsii TVS aktivnoy zony bystrogo reaktora s uchetom organov SUZ i raskholazhivaniya reaktora [Method for calculating interaction forces and deformation of fuel assemblies in the core of a fast reactor taking into account the CPS and reactor cool-down controls]. Preprint FEI-1087 – Preprint IPPE-1087. Obninsk, 1980.
28. Berhard A., Van Dorssebaere J.P., Durance S.P. Experimental Validation of the Harmonic Code. Predictions and Experience of Core Distortion Behavior. Wilmslow, England, National Nuclear Corporated Limited, 1984.
29. Gordeev S.S., Sorokin A.P., Tikhomirov B.B., Trufanov A.A., Denisova N.A. Metodika teplogidravlicheskogo rascheta temperaturnykh rezhimov TVS s uchetom mezhkanal'nogo peremeshivaniya teplonositelya i sluchaynogo otkloneniya parametrov v protsesse kampanii [Technique of thermohydraulic
calculation of temperature regimes of fuel assemblies taking into account interchannel mixing of the coolant and random deviation of parameters during the campaign]. Atomnaya energiya – Atomic Energy, 2017, vol. 122, no. 1, pp. 17–25.
30. Marbach J. Comportement d'un Faisceau d'aiguilles Phenix sour irradiation. Irradiation Behaviour of Mettallic Materials for Fast Reactor Gore Components. CEA-DMECH-B.P. N 2–91190 GIF-Sur-YTJETTE. France, 1979. Pp. 297–301.
31. Betten P.R., Tow D.M. CAT Reconstruction and Potting Comparison of an LMPBR Fuel Bundle. Transactions of the American Nuclear Society, 1984, vol. 46, pp. 779–780.
32. Джадд А. Реакторы-размножители на быстрых нейтронах. М.: Энергоатомиздат, 1984.
33. Buksha Yu.K., Zabudko L.M., Kravchanko I.N. et al. An Analysis of Fast Reactor Fuel Assembly Performance Taking into Account Their Mechanical Interaction in the Core and Re-Fuelling Line Capabilities. Wilmslow, England, National Nuclear Corporated Limited, 1984.
34. Liebe R., Will H., Zehlein H. Mechanical Response of LMPBR Core Under Transient Pressure Loading. Transactions of the American Nuclear Society, 1984, vol. 46, pp. 539–542.
35. Liebe R. Subassembly Experiments and a Computer Code to Analyze the Dynamic Code Deformation During Local Failure Propagation. Nuclear Engineering and Design, 1977, vol. 43, no. 3, pp. 353–371.
36. Bentel H., Liebe R., Will H., et al. Transient Deformation of LMFBR Cores due to Local Failure: Experimental and Theoretical Investigation. Nuclear Engineering and Design, 1977, vol. 43, no. 3, pp. 381–410.
37. Ohmae К., Morino A., Nakao N., et. al. Channel Deformation Analysis for Fast Reactor Fuel Assemblies Undergoing Swelling and Thermal Bowing. Nuclear Engineering and Design, 1972, vol. 23, no. 3, pp. 309–320.
38. Hishida H. Detailed Design Consideration on Wire-Spaced LMPBR Fuel Subassemblies under the Effects of Uncertainties and Non-Nominal Geometries. IAEA, Vienna, 1979. Pp. 29–58. IWGPR/29.
39. Miki К. Deformation Analysis of Fuel Pins within the Wire-Wrap Assembly of an LMFBR. Nuclear Engineering and Design, 1979, vol. 2, no. 3, pp. 371–382.
40. Sakat K., Okabo Y., Hishida H. Three Dimensional Deflection Analysis of Wire-Spaced Fuel Pin Bundles under Temperature and Hydrodynamic Force Fields with Irradiation Effects. Nuclear Engineering and Design, 1978, vol. 48, no. 2–3, pp. 595–610.
41. Vasiliev B.A., Kuzavkov N.G., Mishin O.V. et al. Opyt i perspektivy modernizatsii aktivnoy zony reaktora BN-600 [Experience and prospects of modernization of the core of the BN-600 reactor]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2011, no. 1, pp. 158–169.
42. Porollo S.I., Shulepin S.V., Dvoryashin A.M., Konobeev Yu.V., Zabudko L.M. Rezul'taty issledovaniy tvelov BN-600, obluchennykh v aktivnoy zone pervogo tipa [Results of investigations of BN-600 fuel elements irradiated in the first type core]. Atomnaya energiya – Atomic Energy, 2015, vol. 118, no. 6, pp. 313–320.
43. Sorokin A.P., Efanov A.D., Zhukov A.V., Bogoslovskaya G.P., Sorokin G.A., Matyukhin N.M. Teplogidravlicheskie issledovaniya po probleme povysheniya vygoraniya yadernogo goryuchego v reaktorakh na bystrykh neytronakh [Thermalhydraulic research on the problem of increasing the burnup of nuclear fuel in fast reactors]. Teploenergetika – Thermal Engineering, 2007, no. 3, pp. 9–16.
44. Zhukov A.V., Sorokin A.P., Matyukhin N.M. Mezhkanal'nyy obmen v TVS bystrykh reaktorov: teoreticheskie osnovy i fizika protsessa [Interchannel exchange in fuel assemblies of fast reactors: theoretical foundations and physics of the process]. Moscow, Energoatomizdat Publ., 1989.
45. Kazachkovsky O.D., Sorokin A.P., Zhukov A.V. et al. Metod sosredotochennykh parametrov v zadache o temperaturnom pole v formoizmenennykh TVS bystrykh reaktorov s neadiabaticheskimi granichnymi usloviyami [The method of lumped parameters in the problem of the temperature field in shaped fuel assemblies of fast reactors with non-adiabatic boundary conditions]. Preprint FEI-1672 – Preprint IPPE-1672. Obninsk, 1985.
46. Zhukov A.V., Sorokin A.P., Ushakov P.A. et al. Metod statisticheskogo rascheta aktivnoy zony bystrogo reaktora s uchetom formoizmeneniya TVS v protsesse kampanii [Method of statistical calculation of the core of a fast reactor taking into account the shape change of fuel assemblies during the campaign]. Preprint FEI-1845 – Preprint IPPE-1845. Obninsk, 1987.
47. Gordeev S.S., Sorokin A.P., Tikhomirov B.B., Trufanov A.A., Denisova N.A. Metodika teplogidravlicheskogo rascheta temperaturnykh rezhimov TVS s uchetom mezhkanal'nogo peremeshivaniya teplonositelya i sluchaynogo otkloneniya parametrov v protsesse kampanii [Technique of thermohydraulic calculation of temperature regimes of fuel assemblies taking into account interchannel mixing of the coolant and random deviation of parameters during the campaign]. Atomnaya energiya – Atomic Energy, 2017, vol. 122, no. 1, pp. 17–25.
48. Zhukov A.V., Sorokin A.P., Titov P.A., Ushakov P.A. Analiz gidravlicheskogo soprotivleniya puchkov tvelov bystrykh reaktorov [Analysis of hydraulic resistance of fuel rod bundles of fast reactors]. Atomnaya energiya – Atomic Energy, 1986, vol. 60, no. 5, pp. 317–321.
49. Zhukov A.V., Sorokin A.P., Kirillov P.L., Ushakov P.A., Kiryushin A.I., Kuzavkov N.G. Metodicheskie ukazaniya i rekomendatsii por teplogidravlicheskomu raschetu aktivnykh zon bystrykh reaktorov [Methodical instructions and recommendations for the thermohydraulic calculation of the cores of fast reactors]. Obninsk, 1988. 436 p.
50. Rachkov V.I., Efanov A.D., Zhukov A.V., Kalyakin S.G., Sorokin A.P. Teplogidravlicheskie issledovaniya YaEU (k 60-letiyu puska Pervoy AES) [Thermalhydraulic research of nuclear power plants (to the 60th anniversary of the launch of the First NPP)]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2014, no. 1, pp. 39.
51. Zhukov A.V., Sorokin A.P., Matyukhin N.M. Mezhkanal'nyy obmen v TVS bystrykh reaktorov: raschetnye programmy i prakticheskie prilozheniya [Interchannel exchange in fuel assemblies of fast reactors: calculation programs and practical applications]. Moscow, Energoatomizdat Publ., 1991.
52. Kurbatov I.M., Tikhomirov B.B. Raschet sluchaynykh otkloneniy temperatur v aktivnoy zone [Calculation of random temperature deviations in the core]. Preprint FEI-1090 – Preprint IPPE-1090. Obninsk, 1980.
53. Carelli M.D., Friedland A.J. Hot Channel Factors for Rod Temperature Calculations in LMFBR Assemblies. Nuclear Engineering and Design, 1980, vol. 62, no. 2, pp. 155–180.
54. Tikhomirov B.B., Poplavsky V.M. Vliyanie statisticheskikh kharakteristik puchka tvelov TVS na otsenku temperaturnogo rezhima aktivnoy zony bystrogo natrievogo reaktora [The influence of the statistical characteristics of a bundle of fuel assemblies of fuel assemblies on the assessment of the temperature regime of the active zone of a fast sodium reactor]. Izvestiya vuzov. Yadernaya energetika – Proseedings of Universities. Nuclear Power Engineering, 2014, no. 2, pp. 128–139.
55. Knut D. Iskusstvo programmirovaniya dlya EVM (poluchislennye algoritmy) [The Art of Computer Programming (Obtained Algorithms)]. Moscow, Mir Publ., 1977.
56. Bogoslovskaya G.P., Zhukov A.V., Poplavsky V.M., Sorokin A.P., Titov P.A. et al. Metod rascheta temperaturnogo polya v kassete55. Knut D. Iskusstvo programmirovaniya dlya EVM (poluchislennye algoritmy) [The Art of Computer Programming (Obtained Algorithms)]. Moscow, Mir Publ., 1977.
56. Bogoslovskaya G.P., Zhukov A.V., Poplavsky V.M., Sorokin A.P., Titov P.A. et al. Metod rascheta temperaturnogo polya v kassete tvelov bystrogo reaktora pri sluchaynom raspredelenii parametrov po metodu Monte–Karlo [Method for calculating the temperature field in the fuel rod cassette of a fast reactor with a random distribution of parameters by the Monte Carlo method]. Preprint FEI–1340 – Preprint IPPE–1340. Obninsk, 1982.
57. Bogoslovskaya G.P., Zhukov A.V., Sorokin A.P. et al. Raschet temperaturnogo polya v teplovydelyayushchikh sborkakh bystrykh reaktorov [Calculation of the temperature field in the heat-generating assemblies of fast reactors]. Atomnaya energiya – Atomic Energy, 1983, vol. 55, no. 5, pp. 281–285.
58. Gabrianovich B.N., Delnov V.N. Issledovanie peremeshivaniya teplonositelya v razdayushchikh kollektornykh sistemakh bystrykh reaktorov i VVER [Investigation of coolant mixing in distributing collector systems of fast reactors and VVER]. Atomnaya energiya – Atomic Energy, 1994, no. 5, pp. 340–344.
59. Delnov V.N. Svoystvo podobiya gidrodinamiki razdayushchikh kollektornykh sistem s razlichnymi usloviyami podvoda zhidkosti v kollektor [The property of similarity of hydrodynamics of distributing collector systems with different conditions for supplying fluid to the collector]. Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno–reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constans, 2018, no. 5, pp. 208–222.
60. Gabrianovich B.N., Delnov V.N. Osobennosti gidrodinamiki protochnykh chastey kollektornykh sistem teploobmennikov i reaktorov YaEU [Features of hydrodynamics of flow paths of collector systems of heat exchangers and reactors of nuclear power plants]. Sarov, FSUE RFNC–VNNIIEF Publ., 2016.
61. Delnоv V.N., Gabrianоvich B.N., Yurev Yu.S. Zakоnоmernоsti raspredelenia gidkоsti na vykhоde iz prоtоchnykh chastei razdaiushchikh kоllektоrnykh sistem [Regularities of liquid distribution at the outlet of the flow paths of distributing collector systems]. Certificate of discovery, established at the A.I. Leipunsky (IPPE). International Academy of Authors of Scientific Discoveries and Inventions. Moscow. Application number 670. From 27.11.2019. Diploma no. 518. Priority opening from 26.10.2012.
62. Grunwald G. Stromengaprobleme an Kernkraftwerksreaktoren. Kernenergie, 1979, no. 4, pp. 113–117.
63. Gusev B.D., Kalinin R.I., Blagoveshchensky A.Ya. Gidrodinamicheskie aspekty nadezhnosti sovremennykh energeticheskikh ustanovok [Hydrodynamic aspects of the reliability of modern power plants]. Leningrad, Energoatomizdat Publ., 1989.
64. Gabrianovich B.N., Milovidov N.V., Rukhadze V.K., Shcherbakov S.I. Raschetnye i eksperimental'nye issledovaniya peremeshivaniya teplonositelya v nizhney kamere reaktora na bystrykh neytronakh [Computational and experimental studies of coolant mixing in the lower chamber of a fast neutron reactor]. Voprosy atomnoy nauki i tekhniki. Seriya: Yadernaya tekhnika i tekhnologiya – Problems of Atomic Science and Technology. Series: Nuclear Engineering and Technology, 1989, no. 3, pp. 18–22.
65. Shcherbakov S.I. Raschet techeniya i temperaturnykh poley v protochnykh chastyakh teplotekhnicheskogo oborudovaniya [Calculation of the flow and temperature fields in the flow parts of the heating equipment]. Preprint FEI–1368 – Preprint IPPE–1368. Obninsk, 1988.
66. Gabrianovich B.N., Delnov V.N. Gidrodinamicheskie neravnomernosti teplonositelya na vkhode v aktivnuyu zonu yadernogo reaktora, obuslovlennye kollektornym effektom [Hydrodynamic irregularities of the coolant at the entrance to the core of a nuclear reactor due to the collector effect]. Atomnaya energiya – Atomic Energy, 2011, vol. 111, no. 3, pp. 177–180.
67. Gabrianovich B.N., Delnov V.N. Zakonomernosti formirovaniya gidrodinamicheskikh neravnomernostey na vykhode iz kollektornoy sistemy reaktornoy ustanovki [Regularities of the formation of hydrodynamic irregularities at the outlet from the collector system of a reactor plant]. Teploenergetika – Thermal Engineering, 2014, no. 5, pp. 54–59.
68. Ushakov P.A., Sorokin A.P. Problemy modelirovaniya na vode avariynogo teplovydeleniya estestvennoy konvektsiey v kamerakh bystrykh reaktorov [Problems of modeling on water emergency heat release by natural convection in chambers of fast reactors]. Preprint FEI–2585 – Preprint IPPE–2585. Obninsk, 1997.
69. Ushakov P.A., Sorokin A.P. Rol' kriteriya Reynol'dsa pri modelirovanii estestvennoy konvektsii v zhidkikh metallakh [The role of the Reynolds criterion in modeling natural convection in liquid metals]. Atomnaya energiya – Atomic Energy, 1998, vol. 84, no. 5, pp. 388–394.
70. Ushakov P.A., Sorokin A.P. Modeling problems of emergency natural convection heat removal in the upper plenum of LMR using water. Proc. 9th Int. Topical Meeting on Nuclear Reactor Thermal–Hydraulics NURETH–9. San Francisco, California, 1999.
71. Opanasenko A.N., Sorokin A.P., Zaryugin D.G., Trufanov A.A. Reaktor na bystrykh neytronakh: eksperimental'nye issledovaniya teplogidravlicheskikh protsessov v razlichnykh rezhimakh raboty [Fast neutron reactor: experimental studies of thermohydraulic processes in various operating modes]. Teploenergetika – Thermal Engineering, 2017, no. 5, pp. 1–10.
72. Sorokin A.P., Opanasenko A.N., Kuzina Yu.A., Denisova N.A., Razuvanov N.G., Sviridov E.V., Belyaev I.A. Eksperimental'nye issledovaniya stratifikatsionnykh protsessov v elementakh kontura tsirkulyatsii YaEU razlichnogo tipa [Experimental studies of stratification processes in the elements of the circulation circuit of nuclear power plants of various types]. Trudy V Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Innovatsionnye proekty i tekhnologii atomnoy energetiki (MNTK NIKIET–2018)” [Proc. V Int. Sci. and Techn. Conf. “Innovative Projects and Technologies of Nuclear Energy (ISTC NIKIET– 2018)”]. Moscow, 2018.
73. Opanasenko A.N., Sorokin A.P., Zaryugin D.G., Fedorov A.V. Eksperimental'nye issledovaniya poley temperatury i struktury dvizheniya teplonositelya na modeli bystrogo reaktora na stende V-200 v elementakh pervogo kontura pri perekhode k raskholazhivaniyu estestvennoy tsirkulyatsiey [Experimental studies of the temperature fields and the structure of the coolant movement on the model of a fast reactor at the V-200 stand in the primary circuit elements during the transition to cooling by natural circulation]. Obninsk, IPPE Publ., 2015.
74. Kuznetsov I.A., Poplavsky V.M. Bezopasnost' AES s reaktorami na bystrykh neytronakh [Safety of NPPs with fast neutron reactors]. Moscow, IzdAt Publ., 2012.
75. Walter A., Reynolds A. Reaktory-razmnozhiteli na bystrykh neytronakh [Fast breeder reactors]. Moscow, Energoatomizdat Publ., 1986. 623 p.
76. Sorokin A.P. Teplogidravlicheskie issledovaniya bezopasnosti YaEU s reaktorami na bystrykh neytronakh [Thermalhydraulic safety studies of nuclear power plants with fast neutron reactors]. Teploenergetika – Thermal Engineering, 2007, no. 12, pp. 29–36.
UDC 536.24+621.39.553.34