Krasin V.P., Soyustova S.I.
Moscow Polytechnic University, Moscow, Russia
The main features of the thermodynamic evaluation of the parameters responsible for compatibility of metal materials with liquid Sn-20%Li alloy are considered in the article. Interest in the study of the physicochemical properties of liquid lithium-tin alloys is associated with the prospects for their use in plasma facing components of tokamaks. The main advantages of capillary-porous systems with a liquid metal in comparison with solid materials are their resistance to degradation of properties under tokamak conditions and the ability to self-repair the surface. Due to the fact that liquid tin is a very corrosive metal with respect to many structural materials, the advancement of liquid Li-Sn alloys is largely constrained by the lack of systematic studies of the corrosion resistance of structural materials in contact with these liquid alloys. To calculate the temperature dependences of the solubility of metals in the liquid Sn-20% Li alloy, the method of thermodynamic modeling was used, which included the following steps: (1) selection of models for the Gibbs energy functions; (2) selection and evaluation of input data; (3) optimization of model parameters; (4) calculations and comparisons. Using information on the excess Gibbs energies of mixing for the liquid phase in the form of the Redlich-Kister polynomial decomposition for the corresponding binary systems, the temperature dependences of the solubility of nickel, iron, chromium, molybdenum, and tungsten in the liquid alloy Sn-20% Li were calculated by thermodynamic modeling.
1. Tabarés F.L., Oyarzabal E., Martin-Rojo A.B., Tafalla D., de Castro A., Soleto A. Reactor Plasma Facing Component Designs Based on Liquid Metal Concepts Supported in Porous Systems. Nuclear Fusion, 2017, vol. 57, no 1. doi:10.1088/0029-5515/57/1/016029.
2. Krasin V.P., Soyustova S.I. Quantitative Evaluation of Thermodynamic Parameters of Li-Sn Alloys Related to Their Use in Fusion Reactor. J. Nucl Mater., 2018, vol. 505, pp. 193.
3. Weeks J.R.Lead, Bismuth, Tin and Their Alloys as Nuclear Coolants. Nuclear Engineering and Design, 1971, vol. 15, pp. 363.
4. Fütterer M.A., Aiello G., Barbier F., Giancarli L., Poitevin Y., Sardain P., Szczepanski J., Puma A.L., Ruvutuso G., Vella G. On the Use of Tin-Lithium Alloys as Breeder Material for Blankets of Fusion Power Plants. J. Nucl. Mater., 2000, vol. 283–287, pp. 1375.
5. Vertkov A., Lyublinski I., Zharkov M., Mazzitelli G., Apicella M.L., Iafrati M. Liquid Tin Limiter for FTU Tokamak. Fusion Eng. Des., 2017, vol. 117, pp.130.
6. Massalski T.B. Binary Alloy Phase Diagrams. Materials Park, Ohio, USA, ASM International, 1990, 3589 p.
7. Dinsdale A.T. SGTE Data for Pure Elements. Calphad, 1991, vol. 15, pp. 317.
8. Redlich E., Kister A. К.Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Industrial and Engineering Chemistry, 1948, vol. 40, pp. 345.
9. Lukas H., Fries S.G., Sundman B. Computational Thermodynamics. The Calphad Method. Cambridge, UK, Cambridge University Press, 2007. 324 p.
10. Kaufman L., Bernstein H. Computer Calculation of Phase Diagrams. New York: Academic Press Inc., 1970. 334 p.
11. Alpatov A.V., Paderin S.N. Models and Calculations of Liquid Metallic Solutions. Russian Metallurgy (Metally), 2009, vol. 2009, no. 5, pp. 386.
12. Morachevskii A.G. Thermodynamic Properties and Electrochemical Studies of Lithium–Tin Alloys. Russian Journal of Applied Chemistry, 2015, vol. 88, pp. 1087.
13. Leavenworth H.W., Cleary R.E. The Solubility of Ni, Cr, Fe, Ti, and Mo in Liquid Lithium. Acta Metall, 1961, vol. 9, pp. 519.
14. Heuzey M.C., Pelton A. Critical Evaluation and Optimization of the Thermodynamic Properties of Liquid Tin Solutions. Metall. Trans. B., 1996, vol. 27B, pp. 810.
15. Lyublinski I.E., Evtikhin V.A., Pankratov V.Yu., Krasin V.P. Numerical and Experimental Determination of Metallic Solubilities in Liquid Lithium, Lithium containing Nonmetallic Impurities, Lead and Lead-Lithium Eutectic. J. Nucl. Mater., 1995, vol. 224, no. 3, pp. 288.
16. Niessen A.K., de Boer F.R., Miedema A.R. Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II. Calphad, 1983, vol. 7, no. 1, pp. 51.
17. Kawabata R., Myochin M., Iwase M. Solubilities of Molybdenum in Liquid Tin. Metall. Trans. B., 1995, vol. 26B, pp. 654.
18. Bale C.W., Pelton A.D.Optimization of Binary Thermodynamic and Phase Diagram Data. Metall. Trans. B., 1983, vol. 14B, pp. 77.
19. Brewer L., Lamoreaux R.H. The Mo-Sn (Molybdenum-Tin) System. Bulletin of Alloy Phase Diagrams, 1980, vol. 1, no. 2, pp. 96.
20. Williams M.E., Moon K.W., Boettinger W.J., Josell D., Deal A.D. Hillock and Whisker Growth on Sn and SnCu Electrodepositson a Substrate Not Forming Interfacial Intermetallic Compounds. Journal of Electronic Materials, 2007, vol. 36, pp. 214.
21. Kubaschewski O. Iron-Binary Phase Diagrams. Berlin, Heidelberg GmbH, Springer-Verlag, Research, 2010, vol. 1, pp. 324, 1982. 185 p.
22. Venkatraman M., Neumann J.P.The Cr-Sn (Chromium-Tin) System. Bulletin of Alloy Phase Diagrams, 1988, vol. 9, pp. 161.
23. Pashechko M.I., Vasyliv Kh.B.Solubility of Metals in Fusible Melts. Materials Science, 1996, vol. 31, pp. 485.
24. O’Connell J.P., Prausnitz J.M.Thermodynamics of Gas Solubility in Mixed Solvents. Industrial & Engineering Chemistry Fundamentals, 1964, vol. 3, pp. 347.
25. Bichara C., Bergman C., Mathieu J. С. Monte Carlo Calculations of Thermodynamic Properties of Alloys in the Case of the Surrounded Atom Model. Acta Metall., 1985, vol. 33, pp. 91.
26. Krasin V.P., Soyustova S.I., Lyublinskii I.E.Coordination Cluster Model for Calculating Sievert's Constant of Hydrogen Solutions in Melts of the Pb-Bi-Li System. Inorganic Materials: Applied
27. Ostrovski O.I., Grigoryan V.A, Vishkarev A.F. Svoystva metallicheskih rasplavov [Properties of metal melts]. Moscow, Metallurgiya Publ., 1988. 304 p.
28. Kondo M., Ishii M., Muroga T. Corrosion of Steels in Molten Gallium (Ga), Tin (Sn) and Tin Lithium Alloy (Sn–20Li). Fusion Eng. Des., 2015, vol. 98–99, pp. 2003.
29. Shukla N.K., Prasad R., Roy K.N., Sood D.D.Thermochemistry of Lithium Chromate Li2CrO4(cr) and Lithium Molybdate Li2MoO4(cr). J. Chem. Thermodynamics, 1992, vol. 24, pp. 897.
30. Sharma S., Choudhary R.P.N.Phase Transition in Li2WO4. Ferroelectrics, 1999, vol. 234, pp. 129.
31. Borgstedt H.U., Guminski C. Solubilities and Solution Chemistry in Liquid Alkali Metals. Monatshefte für Chemie, 2000, vol. 131, pp. 917.