Blokhina A.N., Lyakishev S.L., Korotkova O.V.
Experimental and Design Organization “GIDROPRESS”, Podolsk, Russia
The article investigates the influence of coolant flow profile nonlinearity through straight-pipe steam generators tube assembly for fast neutron reactor with sodium coolant on heat exchanger power.
When designing steam generators, a very important task is to correctly calculate the output parameters of the steam generator, especially the power. For the plants without reference solutions it is necessary to perform a deep analysis of the factors affecting on calculated parameters and to incorporate these parameters in the codes. An example of a new plant that do not have analogues is a shell-type steam generator for perspective fast neutron plants with liquid metal sodium coolant. The application of new solutions in steam generators design requires experimental and calculational justification of thermal hydraulic with the use of modern calculation codes. Power calculation of steam generator is carried out by thermohydraulic code “KORSAR/GP”, “PGN-2K”. One of the assumptions in coolant path parameters calculation model (tube space) is a uniform velocity profile by cross-section of tube assembly. It’s also accepted, that each heat exchange tube has the same expense of feed water. On the other hand calculational CFD and experimental studies at aerodynamic model of steam generator showed the presence of significant unevenness of coolant expense by tube space cross-section which is not taken into account in thermohydraulic calculations. The article contains the methodic of accounting for the known uneven coolant flow profile by tube space cross-section in liquid metal steam generator calculation. Based on the results obtained, measures to improve power output and reliability are proposed.
1. Blokhina A.N., Lyakishev S.L., Zubchenko A.S. Vertikal’nye parogeneratory otechestvennyh i zarubeznyh reaktornyh ustanovok s zhidkometallicheskim teplonositelem [Vertical steam generators of domestic and foreign reactor plants with a liquid metal coolant]. Tyazheloemashinostroenie – Heavy Engineering, 2016, no. 7–8, pp. 21–28.
2. Blokhina A.N., Lyakishev S.L., Solomatina V.A. Perspektivnyj korpusnoj parogenerator dlja energobloka na bystryh nejtronah s natrievym teplonositelem [A promising vessel steam generator for a fast neutron power unit with a sodium coolant]. Voprosy atomnoy nauki i tekhniki. Seriya: Obespechenie bezopasnosti AES – Problems of Anatomic Science and Technology. Series: Safety Assurance of NPP, 2012, no. 31, pp. 5–14.
3. Raschetnyj kod dlya analizov bezopasnosti RU s VVER “KORSAR/GP [Calculation code for safety analyzes of VVER RP “KORSAR/GP”]. Computer software package. Sosnovyy Bor, Aleksandrov SRTI Publ., 2006.
4. Teplogidravlicheskij raschet parogeneratora “PGN-2K” [Thermal-hydraulic calculation of the PGN-2K steam generator]. Program for PC, no. 8624607.00621. Podolsk, OKB “GIDROPRESS” Publ., 2011.
5. Blokhina A.N., Lyakishev S.L. Raschet raspredelenija potoka teplonositelja v aerodinamicheskoj modeli parogeneratora s pomoshchiu CFD koda [Coolant flow distribution calculation in the aerodynamic model of the steam generator using the CFD code]. Voprosy atomnoy nauki i tekhniki. Seriya: Obespechenie bezopasnosti AES - Problems of Atomic Science and Technology. Series: Safety Assurance of NPP, 2012, no. 32, pp. 106–112.
6. Losevskoy G.V., Smirnov M.V. Raschetnoe modelirovanie eksperimentov na odnotrubhoj modeli pryamotochnogo parogeneratora dly a RU BN [Computational modeling of experiments on a one-tube model of a once-through steam generator for a BN reactor plant]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2016, no. 2, pp. 111–119.
7. Kirillov P.L. et al. Spravochnik po teplogidravlicheskim raschetam (yadernye reaktory, teploobmenniki, parogeneratory) [Handbook of thermohydraulic calculations (nuclear reactors, heat exchangers, steam generators)]. Moscow, Energoatomizdat Publ., 1990.
8. Blokhina A.N., Lyakishev S.L., Khalutin A.A. Issledovanie vliyaniya profilya potoka teplonositelya na prochnost’ pryamotrubnogo teploobmennogo apparata [Research of the coolant flow profile influence on the strength of a straight-tube heat exchanger]. Voprosy atomnoy nauki i tekhniki: Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology: Series: Nuclear and Reactor Constants, 2018, no. 3, pp. 96–104.
9. Lyakishev S.L., Denisov V.V., Lyakisheva M.D., Chaban V.A., Khalutin A.A., Zharov N.V., Usachev V.A. Raschetnoe obosnovanie parogeneratora [Calculated substantiation of the steam generator]. Voprosy atomnoy nauki i tekhniki. Seriya: Obespechenie bezopasnosti AES – Problems of Atomic Science and Technology. Series: Safety Assurance of NPP, 2014, no. 34, pp. 113–125.
10. Khalutin A.A., Lyakishev S.L., Sharyj N.V., Semishkin V.P. Snizhenie naprjazhenij v uzle zadelki teploobmennyh trub v trubnuju dosku [Reduction of stresses in the unit for embedding heat exchange tubes into the tube sheet]. Tyazheloe mashinostroenie – Heavy Engineering, 2016, no. 6, pp. 14–19.
11. Khalutin A.A., Lyakishev S.L., Blokhina A.N., Lukakhin A.E., Sharyj N.V. Snizhenie konservatizma v obosnovanii prochnosti teploobmennikh apparatov s zhidkometallicheskim teplonositelem na proektnij resurs [Reducing conservatism in substantiation the strength of heat exchangers with a liquid metal coolant for the design life]. Tyazheloe mashinostroenie – Heavy Engineering, 2018, no. 3, pp. 11–15.
12. Lyakisheva M.D., Khalutin A.A., Lyakishev S.L., Semishkin V.P., Bogachev A.V. Avtomatizaciya rascheta nakoplennogo ustalostnogo povrezhdeniya konstrukcii pri ciklicheskom i dlitel’nom ciklicheskom nagruzhenii [Automation of calculation of the accumulated fatigue damage of a structure under cyclic and long-term cyclic loading]. Tyazheloe mashinostroenie – Heavy Engineering, 2015, no. 9, pp. 18–23.