Bogdanova E.V.1, Tikhomirov G.V.1, Suslov I.R.2, Homyakov Y.S.2
1 Institute of Nuclear Physics and Engineering, National Research Nuclear University MEPhI, Moscow, Russia
2 JSC “Proryv”, Moscow, Russia
In the design and operation of nuclear power plants, one of the most important tasks is to assess the radiation protection of the reactor. Currently, the most widespread are deterministic (method of discrete ordinates) and stochastic computational methods for evaluating functionals. At large attenuations of the neutron flux (by 5–15 orders of magnitude) the deep penetration problems require large computational costs. The most accurate simulation of radiation transfer is achieved by using precision programs that implement the Monte Carlo method with a continuous energy dependence of the cross sections. A detailed description of the geometry and the use of continuous cross sections for particle interactions in calculations lead to high computational costs. To improve computational efficiency, there are variance reduction techniques (non-analog modeling). In this paper the possibility of using non-analog modeling in MCU-FR program by calculating the protection of the fast reactor full-scale model with a lead coolant is considered. The volume-integral neutron fluxes were estimated at points located in a long distance from the center of the reactor core. Analysis results were shown the significant reduction of the variance in the reactor shielding by using the non-analog Monte Carlo method.
1. Alekseev N.I., Bolshagin S.N., Gomin E.A., Gorodkov S.S., Gurevich M.I., Kalugin M.A., Kulakov A.S., Marine S.V., Novoseltsev A.P., Oleinik D.S., Pryanichnikov A.V., Sukhino-Khomenko E.A., Shkarovsky D.A., Yudkevich M.S. Status MCU-5 [MCU-5 status]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2011, no. 4, pp. 4–23.
2. Alekseev N.I., Kalugin M.A., Kulakov A.S., Novoseltsev A.P., Sergeev G.S., Shkarovsky D.A., Yudkevich M.S. Verifikatsiya pretsizionnoy programmy MCU i neytronnykh konstant ROSFOND primenitel'no k raschetam kritichnosti bystrykh reaktorov s vysokoobogashchennym uranom [Verification of the MCU code and ROSFOND neutron constants as applied to the calculations of the criticality of fast reactors with highly enriched uranium]. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2012, no. 4, pp. 39–45.
3. Marchuk G.I. Metod Monte-Karlo v probleme perenosa izlucheniy [Monte Carlo method in the problem of radiation transfer]. Moscow, Atomizdat Publ., 1967.
4. Suslov I.R., Lyamtsev I.A. Gibridnyy metod rascheta zashchity YaEU [Hybrid method for calculating the protection of nuclear power plants]. Preprint FEI-3267 – Preprint IPPE-3267. Obninsk, 2016. 15 p.
5. Suslov I.R., Lyamtsev I.A., Chernov S.V. Gibridnyy metod rascheta na osnove skhemy umen'sheniya dispersii CADIS [Hybrid calculation method based on CADIS variance reduction scheme]. Izvestiya vuzov. Yadernaya energetika, 2013, no. 2, pp. 71.
6. X-5 Monte Carlo Team. MCNP – A General Monte Carlo N-Practical Transport Code, Version 5.
LA-CP-03-0245, 2003.
7. Madicken Munk, Rachel N. Slaybaugh. Review of Hybrid Methods for Deep-Penetration Neutron Transport. Nuclear Science and Engineering, 2019. DOI: 10.1080/00295639.2019.1586273.
8. Forster R.A., Little R.C., Briesmeister J.F., Hendricks J.S. MCNP Capabilities for Nuclear Well Logging Calculations. IEEE Transactions on Nuclear Science, 1990, vol. 37, no. 3, pp. 1378–1385.
9. Wagner J.C. Acceleration of Monte Carlo Shielding Calculations with an Automated Variance Reduction Technique and Parallel Processing. Cand. Sci. Techn. Diss. Pennsylvania, USA, Pennsylvania State University, 1997.
10. Gurevich M.I., Kalugin M.A., Oleinik D.S., Shkarovsky D.A. Kharakternye osobennosti MCU-FR [Characteristic features of MCU-FR] Voprosy atomnoy nauki i tekhniki. Seriya: Fizika yadernykh reaktorov – Problems of Atomic Science and Technology. Series: Physics of Nuclear Reactors, 2016, no. 5, pp. 17–21.
11. Belov A.A., Bikeev A.S., Daichenkova Yu.S., Shkarovsky D.A. Otsenka radiatsionnoy bezopasnosti transportnogo konteynera pri perevozke otrabotavshego nitridnogo uran-plutonievogo topliva BN-600 s ispol'zovaniem programmy MCU-FR [Evaluation of the radiation safety of a transport container during the transportation of spent nitride uranium-plutonium fuel BN-600 using the MCU-FR program]. Voprosy atomnoy nauki i tekhniki. Seriya: yaderno-reaktornyye konstanty – Problems of Atomic Science and Technology. Series: nuclear reactor constants, 2020, no. 2, pp. 85–95.
12. Gostev A.L., Zemskov E.A., Melnikov K.G., Suslov I.R., Tormyshev I.V. Gibridnyy neytronno-fizicheskiy raschet radiatsionnoy zashchity yadernogo reaktora s TZhMT [Hybrid neutron-physical calculation of radiation protection of a nuclear reactor with HLMC]. Trudy 10-y Yubileynoy Rossiyskoy nauchnoy konferentsii “Radiatsionnaya zashchita i radiatsionnaya bezopasnost' v yadernykh tekhnologiyakh” [Proc. 10th Anniversary Russian Scientific Conference "Radiation Protection and Radiation Safety in Nuclear Technologies”]. Obninsk – Moscow, 2015.
13. Herschel P.S., John C.W. A Case Study in Manual and Automated Monte Carlo Variance Reduction with a Deep Penetration Reactor Shielding Problem. Nuclear Science and Engineering, 2005, vol. 149, pp. 23–37.
14. Wagner J.C., Peplow D.E., Mosher S.W., Evans T.M. Review of Hybrid (Monte Carlo/Deterministic) Radiation Transport Methods, Codes, and Application at Oak Ridge National Laboratory. Progress in Nuclear Science and Technology, 2011, vol. 2, pp. 808–814.
15. Seleznev E.F., Sychugova E.P., Belousov V.I., Bereznev V.P., Grushin N.A. Raschetnyy kod ODETTA dlya resheniya zadach perenosa neytronov i gamma-kvantov v mnogogruppovom SNPM priblizhenii metodom konechnykh elementov na nestrukturirovannykh tetraedral'nykh setkakh, vklyuchaya rabotu s setochnymi dannymi. Versiya 2.0. [Computational code ODETTA for solving problems of neutron and gamma-ray transfer in the multi-group SNPM approximation by the finite element method on unstructured tetrahedral grids, including work with grid data. Version 2.0]. Certificate of registration of the computer program RU, no. 2018611159, 2018.
16. Briesmeister J.F. MCNPTM - a General Purpose Monte Carlo N-Particle Transport Code. Version 4C. LA-13709-M. Dec. 2000.
17. Pederson S.P., Forster R.A., Booth T.E. Confidence Interval Procedures for Monte Carlo Transport Simulations. Nuclear Science and Engineering, 1997, vol. 127, pp. 54–77. DOI: 10.13182/NSE97-A1921.
18. Dragunov Yu.G., Lemekhov V.V., Smirnov V.S., Chernetsov N.G. Tekhnicheskie resheniya i etapy razrabotki reaktornoy ustanovki BREST-OD-300 [Technical solutions and stages of development of the BREST-OD-300 reactor]. Atomnaya energiya– Atomic Energy, 2012, vol. 113, no. 1, pp. 58–64.
19. Reaktornaya ustanovka estestvennoy bezopasnosti BREST-OD-300 [Reactor installation of natural safety BREST-OD-300]. Available at: https://www.nikiet.ru/index.php/2018-05-15-08-28-04/innovatsionnye-proekty/brest-od-300 (accessed 19.01.2021).
20. Glazov A.G., Leonov V.N., Orlov V.V., Sila-Novitsky A.G., Smirnov V.S., Filin A.I., Tsikunov V.S. Reaktor BREST i pristantsionnyy yadernyy toplivnyy tsikl [The BREST reactor and the on-site nuclear fuel cycle]. Atomnaya energiya– Atomic Energy, 2007, vol. 103, pp. 15–21.
21. «Proryv» Project. Available at: http://proryv2020.ru/ (accessed 19.01.2021).