DOI: 10.55176/2414-1038-2021-2-127-138
Authors & Affiliations
Vereshchagina T.N., Mikheev A.S., Kudryaeva Y.V.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Vereshchagina T.N. – Chief Researcher, Dr. Sci. (Techn.). Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel.: +7 (484) 399-83-60; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Mikheev A.S. – Senior Researcher.
Kudryaeva Y.V. – Design Engineer 1 category.
Abstract
This paper presents a brief review of research and developments history in the field of thermoacoustics from the 18th to the 20th century. The modern state of the art in the field of thermoacoustics is presented too. The basic equations of the linear thermoacoustics (generalized Rott – Swift equations) theory are presented. It is shown that now there are wide opportunities to use various devices based on the direct and reverse thermoacoustic effects. The features and advantages of thermoacoustic devices are listed. Particular attention is paid to cooling systems. It is shown that the development of refrigeration units based on the thermoacoustic effect is an actual and promising task. The conclusion is made about the relevance of theoretical and experimental studies in the field of thermoacoustics. The article also presents the results of publication activity analysis in the field of thermoacoustics over the past 20 years. It is concluded that there has been a dramatic increasing of publications number deal with the results of scientific and practical developments in the field of thermoacoustics over the past 20 years, both in Russia and abroad. Based on the analysis of inventive activity, conclusions are drawn about the wide scope of application of thermoacoustic devices and the directions of their improvement.
Keywords
thermoacoustic effect, acoustic energy, energy conversion, Rott – Swift equations, thermoacoustic engine, Rijke tube, regenerator, pulse tube refrigerator, thermoacoustic cryocooler, gas cooling, publication activity
Article Text (PDF, in Russian)
References
- Strutt J.W. (Rayleigh) The explanation of certain acoustical phenomena. Nature, 1878, vol. 18. no. 455, pp. 319–321.
- Strutt J.W. (Rayleigh) The theory of sound. Vol.2. Macmillan and Co. London, Limited, 1926.
- Rossing T.D. Handbook of Acoustics. New York, Springer Science+Bisiness Media, 2007. 1171 p.
- Vorotnikov G.V. Metodika modelirovaniya rabochego protsessa termoakusticheskogo dvigatelya na ustanovivshemsya rezhime. Diss. kand. techn. nauk [Technique for modeling the working process of a thermoacoustic engine in a steady state. Cand. Sci. Techn. Diss.]. Samara, 2019. 208 p.
- Zalluhoglu U., Olgas N. Thermo-acoustic instability: Theory and experiments. IFAC-PapersOnLine, 2015, vol. 8–42, pp. 75–80.
- Kalugin I.P., Arseev A.V. Issledovaniye pul'siruyushchego goreniya v krupnykh ustanovkakh [Investigation of pulsating combustion in large installations]. IFZH – Journal of Engineering Physics and Thermophysics, 1975, vol. 28, no. 4, pp. 661–669.
- Radebaugh R. Development of the pulse tube refrigerator as an efficient and reliable cryocooler. Proc. Inst. Refrigeration. London, 2000, pp. 11–29.
- Radebaugh R. Crioculers: the state of the art and resent developments. J. Phys. Condensed Matter, 2009, vol. 21, p. 164219.
- Hofler T., Wheatley J.C., Swift G.M, Migliori A. Acoustic cooling engine. Patent US, no. 4722201, 1988.
- Belozertsev V.N., Pulkina A.Y. Problemy i perspektivy sistem okhlazhdeniya s termoakusticheskim privodom [Problems and prospects of cooling systems with thermoacoustic drive]. Vestnik Mezhdunarodnoy akademii kholoda – Journal of International Academy of Refrigeration, 2017, no. 3, pp. 41–46.
- Mikulin E.L., Tarasov A.A., Shkrebyonock M.P. Low-temperature expansion pulse tubes. Adv. Cryogenic Eng, 1984, vol. 29, pp. 629–637.
- Karagusov V.I., Maltsev P.S. Bortovoy termoakusticheskiy konditsioner na prirodnom gaze [On-board thermoacoustic air conditioner based on natural gas]. Transport na al'ternativnom toplive – Alternative Fuel Transport, 2011, no. 4 (22), pp. 45–47.
- Mironov M.A., Pyatakov P.A. Termoakusticheskiye tekhnologii polucheniya kholoda [Thermoacoustic technologies for obtaining cold]. Kholodil'naya tekhnika –Refrigeration equipment, 2011, no. 7, pp. 20–25.
- Mekhtiev A.D., Yugay V., Esenzholov U.S., Kaliaskarov N.V. Dvigatel' s vneshnim podvodom teploty na osnove termoakusticheskogo effekta dlya avtonomnoy teplovoy elektrostantsii [Motor with external heat input based on thermoacoustic effect for an autonomous thermal power plant]. Vestnik YUUrGU. Seriya “Energetika” – Bulletin of South Ural State University. Series “Power Engineering”, 2019, vol. 19, no. 2, pp. 22–30.
- Nekrasova S.O., Sarmin D.V., Uglanov D.A. et al. Chislennoye i eksperimental'noye issledovaniye termoakusticheskogo okhladitelya na pul'satsionnoy trube [Numerical and experimental study of a thermoacoustic cooler on a pulsation tube]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk – Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 2015, vol. 17, no. 6(2), pp. 505–513.
- THEAC-25. The Silent One Thermo Acoustic Energy Converter. Sound Energy. Available at http://circularenergy.eu/wp-content/uploads/2019/11/SoundEnergy-brochure-A4-LR6.pdf (accessed 08.06.2020).
- Hasegawa S., Sharify E.M. Traveling-wave thermoacoustic refrigerator driven by a multistage traveling-wave thermoacoustic engine. Applied Thermal Engineering, 2017, vol. 113, pp. 791–795.
- Xu J., Hu J., Zhang L., Luo C., Dai W. Numerical Investigation on Looped Thermoacoustically-Driven Criocooler for Natural Gas Liquefaction. Energy Procedia, 2017, vol. 105, pp. 1725–1729.
- Nirvana Energy Systems. Available at: https://nirvana-es.com/technology.html (accessed 08.06.2019).
- Novyy teplovoy dvigatel' ot kompanii Etalim [New heat engine from the company Etalim]. Available at: https://www.joule-watt.com/energy-news/novy-j-teplovoj-dvigatel-etalim-tac/ (accessed 08.06.2020).
- Higgins W. On the Sound produced by a Current Hydrogen Gas passing through a Tube. Journal of Natural Philosophy, Chemistry and the Arts, 1802, no. 2, pp. 129–130.
- Rijke P.L. Notice of a new method of causing a vibration of the air contained in a tube open at both ends. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1859, vol. 183, pp. 419–422.
- Rijke P.L. Notiz über eine neue Art, die in einer an beiden Enden offenen Röhre enthaltene Luft in Schwingungen zu versetzen. Wiley-VCH, 1859, vol. 183, no. 6, pp. 339–343.
- Riess P. Das Anblasen offener Röhren durch eine Flamme. Annalen der Physik, 1859, vol. 184, no. 12, pp. 653–656.
- Riess P. Anhaltendes Tönen einer Röhre durch eine Flamme. Annalen der Physik, 1860, vol. 185, no. 1, pp. 145–147.
- Richardson E.G. The Theory of the Singing Flame. Proceedings of the Physical Society of London, 1922, vol. 35, no. 1, pp. 47–54.
- Lehmann K.O. Uber die Theorie der Netztöne (thermisch erregte Schallschwingungen). Annalen der Physik, 2006, vol. 421, no. 6, pp. 527–555.
- Raushenbach B.V. Vibratsionnoye goreniye [Vibration burning]. M.: GITTL Publ., 1961. 501 p.
- Roginsky O.G. O vibratsionnom gorenii [About vibrational combustion]. Akusticheskiy zhurnal, 1961, vol. 7, no. 2, pp. 131–154.
- Abramovich G.N. Prikladnaya gazovaya dinamika [Applied Gas Dynamics]. Moscow, Nauka Publ., 1991. 600 p.
- Rott N. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Journal of Applied Mathematics and Physics, 1969, vol. 20, pp. 230–243.
- Gifford W.E., Longsworth R.C. Pulse tube refrigeration progress. Adv. Cryogenic Eng., 1965, vol. 10, pp. 69–79.
- Rott N. Thermoacoustics. Advances in Applied Mechanics, 1980, vol. 20, pp. 135–175.
- Backhaus S., Swift G.W. A thermoacoustic Stirling heat engine. Nature, 1999, vol. 399, pp. 335–338.
- Backhaus S., Swift G.W. A thermoacoustic Stirling heat engine: Detailed study. J. Acoust. Soc. Am., 2000, vol. 107 (6), pp. 3148–3166.
- Swift G.W. Thermoacoustic engines. J. Acoust. Soc. Am., 1988, vol. 84 (4), pp. 1145–1180.
- Swift G.W. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. New York, Acoustical Society of America, 2002. 345 p.
- Ward W.C., Swift G.W. Design environment for low amplitude thermoacoustic engines DeltaE. J. Acoust. Soc. Am., 1994, vol. 95, pp. 3671–3672.
- Wheatley J., Hofler G.W., Swift G.W., Migliori A. Experiments with an intrinsically irreversible acoustic heat engine. Phisical Review Letters, 1983, vol. 50, pp. 53–62.
- Backhaus S., Tward E.L., Petach M. Thermoacoustic Power Systems for Space Applications: Contract Report, Los Alamos: Thermal Physics Group, Los Alamos National Laboratory, 2001. Available at: https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-01-5811 (accessed 02.04.2021).
- Marone I.Y., Tarakanovsky A.A. Issledovaniya vozbuzhdeniya zvuka v trubke Riyke [Investigations of sound excitation in a Rijke tube]. Akusticheskij Zhurnal, 1967, vol. 13, no. 2, pp. 302–304.
- Marchenko V.N., Timoshenko V.I. Issledovaniye termicheskoy generatsii zvuka v trubke Riyke [Investigation of thermal generation of sound in a Rijke tube]. Akusticheskij Zhurnal, 1970, vol. 16, no. 2, pp. 323–324.
- Timoshenko V.I. Issledovaniye aerotermicheskogo usileniya zvuka v trubakh [Study of aerothermal sound amplification in pipes]. Akusticheskij Zhurnal, 1971, vol. 17, no. 4, pp. 621–622.
- Tarakanovsky A.A., Vozbuzhdeniye akusticheskikh kolebaniy v trube so sdvoyennoy setkoy Riyke [Excitation of acoustic vibrations in a pipe with a double Rijke grid]. Akusticheskij Zhurnal, 1972, vol. 18, no. 2, pp. 299–304.
- Polshin A.V. Truba Riyke kak istochnik odnochastotnykh akusticheskikh kolebaniy [Rijke pipe as a source of single-frequency acoustic vibrations]. Akusticheskij Zhurnal, 1982, vol. 28, no. 1, pp. 106–110.
UDC 534.142
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2021, issue 2, 2:9